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Abstract: Artificial intelligence (AI) is a powerful concept still in its infancy that has the potential,
if utilised responsibly, to provide a vehicle for positive change that could promote sustainable
transitions to a more resource-efficient livability paradigm. AI with its deep learning functions and
capabilities can be employed as a tool which empowers machines to solve problems that could reform
urban landscapes as we have known them for decades now and help with establishing a new era;
the era of the “smart city”. One of the key areas that AI can redefine is transport. Mobility provision
and its impact on urban development can be significantly improved by the employment of intelligent
transport systems in general and automated transport in particular. This new breed of AI-based
mobility, despite its machine-orientation, has to be a user-centred technology that “understands”
and “satisfies” the human user, the markets and the society as a whole. Trust should be built,
and risks should be eliminated, for this transition to take off. This paper provides a novel conceptual
contribution that thoroughly discusses the scarcely studied nexus of AI, transportation and the
smart city and how this will affect urban futures. It specifically covers key smart mobility initiatives
referring to Connected and Autonomous Vehicles (CAVs), autonomous Personal and Unmanned
Aerial Vehicles (PAVs and UAVs) and Mobility-as-a-Service (MaaS), but also interventions that may
work as enabling technologies for transport, such as the Internet of Things (IoT) and Physical Internet
(PI) or reflect broader transformations like Industry 4.0. This work is ultimately a reference tool for
researchers and city planners that provides clear and systematic definitions of the ambiguous smart
mobility terms of tomorrow and describes their individual and collective roles underpinning the
nexus in scope.

Keywords: artificial intelligence; smart city; smart transport; connected and autonomous vehicles;
personal and unmanned aerial vehicles; mobility-as-a-service; internet of things; physical internet;
industry 4.0

1. Introduction

In a time that is dictated, more than ever before, by a need to shift to a more sustainable
techno-social paradigm to avoid the adverse repercussions of a resource-intensive and unthoughtfully
opportunistic livability philosophy that does not look far in the future, Artificial Intelligence (AI) has
the potential to provide a vehicle for transformation. AI is a concept that is defined as a system’s
ability to correctly interpret external data, to learn from such data and to use that learning to achieve
specific goals and tasks through flexible adaptation [1]. AI is based on the development of autonomous
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agents that can reason and plan towards their goal without any built-in knowledge base of their
environment [2]. AI holds the promise of making us healthier, wealthier and happier by reducing
the need for human labour and by vastly increasing our scientific and technological progress [3].
Nowadays, AI has transformed our lives in many aspects, from semi-autonomous cars on the roads
to robotic vacuums in our homes and arguably will continue to invade every area of our lives, from
health care to education, entertainment and security, for the foreseeable future [4].

One of the prime areas where AI will make its most paradigm-shifting impact is transport.
Examples of AI methods that are finding their way into the transport field include Artificial Neural
Networks (ANNs), Genetic Algorithms (GAs), Simulated Annealing (SA), Artificial Immune System
(AIS), the Ant Colony Optimiser (ACO), Bee Colony Optimisation (BCO) and the Fuzzy Logic Model
(FLM) [5]. These AI interventions have potential applications for the vehicle, the infrastructure,
the driver or transport user, and in particular, for how these interact dynamically to deliver a transport
service that promotes user empowerment and supports human–machine interactions [6].

Since transport is the most decisive cornerstone for a city’s functionality, development and
prosperity, revolutionising transport transforms the concept of the city. Urban structure and transport
system developments are closely connected as evidenced by theories like the urban land rent theory
and location theory, which conceptualise the connection between transport and urban land use [7,8].
It is impossible to abstract the vision of the cities of tomorrow from that of the future configuration
of their transport systems [9]. The provision of mobility solutions for battling congestion, pollution
and environmental degradation through AI technology that is capable of providing better, faster,
cleaner and cheaper ways to move around is the pillar, together with telecommunication and energy
applications [10], of what we call smart cities and the way forward for urban science.

The concept of the smart city is far from being limited to the application of digital and cloud-based
technologies to cities since it has creative, sustainable, strategic decision-making, integrating, knowledge-
generating and people-focused qualities, or as Albino et al. [11] describe it, a smart city is an “instrumented,
interconnected and intelligent city”. A smart city incorporates Information and Communication
Technologies (ICT) to reduce costs, optimise resource consumption, improve interactivity and enhance
the quality of life for its citizens [12]. Where once the lexicon of transport professionals and city
planners centred upon sustainable urban transport and sustainable cities, this has now shifted in
attention, or expanded, with reference to smart cities and smart urban mobility that is reflective
of digital age possibilities [13]. This can be seen in the high number of smart city initiatives, city
implementation projects and jointly-funded public research projects that have rapidly emerged across
the world [14], especially in the mobility sector. The notion of smart cities is overarching in this work,
and because of our future mobility angle, is primarily set to look into the context of policy prioritisation
for sustainable urban growth via transport innovation, which as Kominos et al. [15] recognises, is still
a largely unknown field. As with any socio-technical transition, the shift to an AI-based mobility
paradigm creates critical questions to be posed in terms of how the transition will be managed [16] and
what will be those interventions that will define this transition.

This paper provides a novel conceptual contribution that tries to answer these questions by
describing some of the key transport components that are projected to be central to the AI-centric smart
city of the (near?) future. The paper is ultimately a research lexicon defining terms and their dimensions
that reflect and affect the new autonomous, connected, shared and digitised mobility paradigm of
tomorrow. More specifically the paper thoroughly discusses the nexus of AI, transportation and
the smart city by covering interventions referring to Connected and Autonomous Vehicles (CAVs),
Unmanned and Personal Aerial Vehicles (UAVs and PAVs) and Mobility-as-a-Service (MaaS), but also
the Internet of Things (IoT), Physical Internet (PI) and Industry 4.0, which are three initiatives that may
impact transport in direct or indirect ways and are critical parts of the smart city agenda.

Automated driving is widely considered to represent a technology that could signal an evolution
towards a major change in (car) mobility [17,18]. CAVs are the ultimate manifestation of AI in the
field of transport; AI algorithms and machine learning (ML) functions are the tools that could replace
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human intervention and “drive” CAVs instead [19]. CAVs are projected to have the ability to introduce
eco-driving and energy-saving functions, enhanced safety and security standards, better road space
allocation and traffic congestion management and replace time spent driving with time that can
be utilised for more productive activities [20]. However, despite their massive hype, CAVs still
present more unanswered questions than definitive answers [21]. UAVs, drones and PAVs have
recently emerged as a viable alternative to manage problems that primarily arise in the areas of visual
monitoring and traffic surveillance [22,23]. Fully autonomous UAVs and PAVs in the future will be
of massive importance for logistics and also for moving people; they are expected to reshape travel
patterns as we have known them for decades now by expanding vertically the urban landscape and
transport network of future cities. MaaS, a very recent transport concept with limited applications
of partial implementation thus far, is promising digital packages of personalised mobility that will
replace privately owned vehicles and optimise the use and combination of several mobility alternatives.
MaaS will be enabled by powerful AI algorithms that will provide holistic travel planning, booking
and ticketing, and real-time information services customised and tailored to each consumer’s needs.
MaaS can maximise its potential if it incorporates, as a complementary option to its public transit
elements, the use of CAVs by way of car-sharing and ride-sharing schemes [21]. Technology trends
referring to an AI-centric smart city, which could affect (or be affected by) future mobility, such as the
IoT, PI and Industry 4.0, are becoming increasingly relevant [24] and will also be considered through
a transport-oriented lens herein. This is because the IoT will enable unprecedented connectivity
levels between users and transport modes; the PI will revolutionise freight transport optimisation
through digital, automated, interconnected and big data technologies; and Industry 4.0, the backbone
of tomorrow’s market productivity, depends on smart transport.

Henceforth, the paper provides the framework of the research methodology employed,
a description of the aforementioned initiatives (a section for each of them) and a final section
that serves as a lexicon for the concepts considered in the previous sections. This last part of the paper
is also about elaborating conclusions that bring all the different pieces of the complicated smart urban
mobility’s puzzle together and deliver some key recommendations for city scientists, policymakers,
transport and urban planners and an agenda for future research directions.

2. Research Methodology

This work is the result of a systematic literature review that examined the peer-reviewed literature
published in English for the nexus of AI, transport and the smart city. The Scopus search which
underpinned the approach was limited strictly to journal papers as a quality measure. The first paper
ever recorded that considered this research agenda was published as early as 1984 but the vast majority
of the papers produced (>90%) have been published during the last decade; these papers were the
most relevant ones for our task. Furthermore, our analysis includes a few references outside this
search highlighting peripheral, but yet important, aspects of the diverse agenda covered that were
not picked up by the Scopus searching engine but were deemed necessary to support some of the key
arguments made.

Four different searches were undertaken using Scopus. All the possible combinations of the key
elements of the study were explored to make sure that most of the synergies reported in a diverse and
multidisciplinary literature between AI, transport and the smart city would be identified and examined
in our analysis. The search “artificial intelligence” AND “transport” resulted in identifying 873 papers,
the search “transport” AND “smart city” returned 594 papers and the search “artificial intelligence”
AND “smart city” shortlisted 201 papers fulfilling our search criteria. The most important search of all,
bringing together “artificial intelligence” AND “transport” AND “smart city”, confirmed our rationale
for writing this manuscript; only 18 papers were found to be discussing all three elements and their
interrelations. Only two of those papers had some direct, but partial, relation with the explicit goals of
the present work [25,26], while the other papers were more computing- and engineering-oriented or
focused on very isolated aspects of the nexus discussed. One finding that was particularly interesting
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was the availability of conference papers when compared with journal papers; for the search “artificial
intelligence” AND “smart city”, we ended up shortlisting 201 papers but the number of research
conference papers were four times that many.

Figure 1 provides the results of our Scopus search for the subject combinations discussed above
and also includes quantification of the sources identified. Due to the large number of journal outputs
that we identified, Figure 1 lists only the top five journals (in terms of the number of papers referring
to our four key searches) per combination only. We did not necessarily end up reviewing these journal
papers per se since our analytic criteria (explained below) were primarily quality- and relevance-related.

We also searched for combinations of our study’s key elements (i.e., the interventions discussed
per se). More specifically, “CAVs” AND “UAVs” returned zero papers, “CAVs” AND “PAVs” returned
three papers, “CAVs” AND “MaaS” returned 13 papers, “MaaS” AND “UAVs” returned 46 papers
and “MaaS” AND “PAVs” returned two papers. Furthermore, “CAVs” AND “IoT” returned 29 papers,
“UAVs” AND “IoT” returned 169 papers, “PAVs” AND “IoT” returned three papers, “MaaS” AND
“IoT” returned 174 papers, “PI” AND “CAVs” returned nine papers, “PI” AND “UAVs” returned 28
papers, “PI” AND “PAVs” returned zero papers, “PI” AND “MaaS” returned one paper, “Industry 4.0”
AND “CAVs” returned one paper, “Industry 4.0” AND “MaaS” returned one paper, “Industry 4.0”
AND “UAVs” returned six papers and “Industry 4.0” AND “PAVs” returned no papers. The majority
of these papers were already covered in our initial and more generic search approach outlined in
Figure 1. Again, most of them did not align well with the specific research agenda of our paper but
were instead rather irrelevant, with most of them being very technical.

At the end, each of the four authors read the 1668 titles of the papers identified, subsequently
reviewed more than 500 abstracts of papers that were closer to the scope of the present work and
finally generated an independent structured literature review based on those articles identified as more
relevant in sketching the picture of the AI-centric transport system that will underpin the smart cities
of tomorrow. The four authors then compared and synthesised their independent review drafts to
develop a unified “bigger-picture” narrative, which was a process headed by the lead author. The paper
in its finalised form includes references to 133 studies, all of which were read from cover to cover.
The selection of material was made based on the subject-specific relevancy of the research output,
the host journal impact factor and each paper’s impact as measured by the number of its citations.
While the authors acknowledge an element of subjective criteria in the choice of the material used
(selection bias is part of human nature), this systematic literature review process was adopted to
minimise bias and improve the richness, fluidity and value of the content. The authors, each of them
with distinct scientific backgrounds and research priorities and values, acted as checks and balances to
each other and highlighted key points of the literature that a single author could not have captured in
the same interdisciplinary and vivid way.

To support their bibliographic work, the authors reviewed evidence from a selection of
representative international case study examples and media news to recognise the success or failure of
very early (or pilot applications of) AI-centric smart city transport practices. This adds an empirical
dimension to the paper’s theoretical and conceptual merits that may directly inform academics, city
scientists, policymakers, mobility providers and urban planners about some of the lessons available to
them that could fuel a positive paradigm-shifting transition governed by AI applications. A similar
two-step methodological approach involving this structure has been used in the lead author’s previous
work with significant success [7], which is something that gives an extra layer of validity to the
present study.

The work is also not about forecasting only the “wins”, “advantages” and “positive distributional
impacts” of the listed AI-centric mobility initiatives, but also develops an in-depth understanding
of the not-so-often-studied barriers, concerns and unintended consequences of this transformation
process. Change, despite how good it may be, is neither easy nor straightforward; strategic planning
and implementation are of critical importance for transitioning to the era of the “smart city”.
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3. Connected and Autonomous Vehicles

The automobile has changed the earth’s natural and built environment more than any other
invention in the history of humankind by reshaping cities and economies [27]. Connected and
Autonomous Vehicles (CAVs) are the natural successors of conventional cars with motion and action
capabilities that do not require any sort of conductor (driver) or teleoperation control [28], along with
connectivity functions that make them proactive, cooperative, well-informed and coordinated since
they can “talk” with their surrounding environment [29] and eventually with everything and everyone
when the IoT will be in place. CAVs will transform mobility provision, transport networks and road
infrastructure, passing the vehicle control and driving responsibilities from humans to machines with
enormous AI and wireless connectivity capacities. CAVs are projected to be the next gold standard of
mobility, transforming cars and city development as a whole through the use of AI from what they are
conceived of as today.

The automotive industry will have to transform, by changing entirely their production lines,
as CAVs are very different from the conventional human-driven vehicles. The companies actively
working on the development of CAVs and conducting trials with various degrees of success (including
a few life-losing failures) is a mix of traditional car manufacturers, ride-hailing and intelligence
companies namely: Audi, Baidu, BMW, Daimler, Delphi, Didi Chuxing, Ford, General Motors, Honda,
Huawei, Hyundai, Jaguar Land Rover, Lyft, Magna, Mercedes-Bosch alliance, Microsoft, nuTonomy,
PSA, Renault-Nissan alliance, Samsung, Tesla, Toyota, Uber, Volkswagen Group, Volvo, Waymo
(Google’s self-driving cars project), ZF and Zoox. Intelligence provision powerhouses like Google and
ride-hailing giants like Uber, not considered at present as typical vehicle manufacturers, will radically
change the dynamics of the industry becoming new entrants in a more versatile automotive market,
where ICT will be a difference-making competitive advantage. The automotive industry may also be
forced to adopt new business models for sales that will prioritise shared use over private ownership if
smart cities decide to actively promote sustainable growth via car ownership reduction. USA, Great
Britain, Australia, New Zealand, Germany, Sweden and China are the leading countries trying to
position themselves in the epicentre of the CAVs “explosion” working on CAV-enabling legislation
and investing massively in research and development activities including pilots and trials.

Every revolution promises a spirit of optimism and significant changes and CAVs are a prime
example of this [30]. CAVs intend to generate numerous benefits, such as creating more free time
(since the average driver spends the equivalent of six weeks driving per year); enhancing traffic safety
and accident prevention; improving accessibility, comfort and in-vehicle riding experience; potentially
making it easier for policymakers to prioritise car-sharing and ride-sharing business models; and
reducing road traffic congestion, environmental degradation, air pollution, noise nuisance and social
exclusion for those currently unable to drive. At the same time though, there are also some concerns,
usually less communicated and studied, about the increased vulnerability to hacking, software and
hardware flaws; loss of privacy and travel data exploitation; liability allocation challenges; increased
car usage from more populations and unoccupied vehicles; increased traffic accident, congestion and
emission rates during the transition period when CAVs will co-exist with simpler AVs, semi-autonomous
and conventional vehicles; and behavioural adaption, situational awareness and user resistance
problems. These opportunities and challenges have been recorded in the literature [17,19–21,31–34],
but have rarely been grouped in a single source. Table 1, based on these readings, summarises the
key opportunities and challenges reflecting and affecting the full-scale launch of CAVs and their
future usage.
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Table 1. Opportunities and challenges referring to the implementation, uptake and usage of Connected and Autonomous Vehicles (CAVs).

Potential Benefits to Society and Users Potential Concerns for Society and Users

Eliminate the human error factor from driving leading to traffic safety and accident
prevention gains Ambiguity for responsibility in accidents and damage scenarios

Improved traffic security due to more and easier surveillance, monitoring and control Increased vulnerability to software and hardware flaws and cybersecurity threats

Reduced traffic congestion due to more efficient mobility and parking management Extra car trips may be generated from more users and unoccupied vehicles

Time savings due to efficient routing, platooning and stabilised traffic flow Communication problems with non- or partially autonomous vehicles and other modes

Environmental benefits including less CO2 and greenhouse gas emissions Susceptibility of the car’s navigation system to adverse weather conditions

Decreased noise nuisance since CAVs will have quieter engines Lack of trust in new technologies and agencies responsible for running CAVs

Reduced energy consumption and fossil fuel dependence - CAVs will eco-drive Privacy issues and loss of personal space

Increased productivity - people can use in-vehicle time to do productive activities Employability threats - driving-based jobs will cease to exist and therefore reskilling labour
would be necessary

Huge car-sharing and ride-sharing potential Likely loss of “ownership” rights - people like or are used to privately owned vehicles

Significant demand-responsive potential Possible blow to public transport services as we know them

Cost minimisation for logistics, taxi and ride-sourcing companies and their customers High-cost investments in advanced road infrastructure suitable for the needs of CAVs

Less need for parking, which will free up public space for other more people-focused uses Rural inequalities if CAVs become an urban only scenario due to cost

Fewer layers of social exclusion - less age, disability and skill barriers to “drive” a vehicle Inequity issues if CAVs end up becoming expensive and over-complicated privately
owned machines

Smaller enforcing and policing requirements Need for an entirely new road transport regulations system and traffic code of practice

Fewer requirements for road signage Moral issues - can an algorithm decide who dies in an unavoidable crash?

Reduced insurance premiums User resistance to giving up driving control

Smoother rides due to less acceleration and deceleration and steadier speeds Behaviour adaptation problems - change takes time and generates dissatisfaction

More cabin space - there is no need for a steering wheel Loss of driving skills and situational awareness

More relaxed travelling - more time to sleep, eat, play and have fun Loss of “freedom” and “joy” that are part of the human driving experience
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CAVs, despite technological breakthroughs, a wealth of promised benefits and million miles driven
automatically in segregated and controlled situations across the world, may not be easily integratedable
in our urban transport systems as yet. This is a long process that could take many years before
fully in play [20]. This is because the introduction of these vehicles is accompanied by uncertainties
in their effects on the car-sharing market and land use patterns but more importantly in how the
public formulates opinions regarding benefits and concerns [35]. An unconditional, technology-driven
introduction of CAVs could be in conflict with social and environmental sustainability objectives,
ignoring the fact that the transport system is a complex socio-technical system which calls for joint
optimisation of both the technical and societal sub-systems [36]. A techno-fix cannot be a panacea since
technology is only one of the several tools in the toolbox of mobility [19,32,37], therefore the revolution
of CAVs should be underpinned by legislative, moral, educational, business and social engagement
frameworks that set out a clear modus operandi.

It is also expected that CAVs might have a wider role to play if they are, as they should be, designed
to be a powerful intervention with sustainability merits in environmental, economic and social terms;
a role that is beyond the traditional automobility regime of today. They need to evolve to a strong
complementary piece to a more holistic mobility system that substitutes private ownership of cars (and
to some respect some of their use) with multimodal mobility packages that are designed to promote
alternative means of transport and have CAVs as a shared option on an ‘as-needed’ basis only [21].
CAVs need to become a strategic centerpiece of MaaS and not its alternative. CAVs will therefore need to
co-function and create synergistic links with public transport instead of competing for space and ways
of priority. Transit Oriented Development (TOD) employing CAVs as first- and last-mile solutions and
neighbourhood feeders to mass transit systems should be the ideal development scenario from an urban
and land use perspective as a strategy that will not allow travel behaviour to become disproportionally
car-centric. Bringing cars and public transport together, even in their automated future formats, may
be an uneasy union because of their traditionally contradictory roles but future policy and planning
efforts need to assist with balancing tensions and achieving the optimum blend of the two [7]. CAVs
also need to be cleaner than ever before. Becoming electric is an option provided that the electricity will
be produced by renewable energy sources and thus will be non-polluting as Kougias et al. (2019) [38]
and Kougias et al. (2020) [39] strongly recommend for the right electromobility model. CAVs need to
be autonomous and connected but they should also be strongly linked to electrification and shared
usage. The synergistic effects between automation, connectivity, electrification and shared use can
multiply significantly the benefits of CAVs as also noted by a relevant study [17].

However, the road to change is not straightforward. According to Nikitas (2020) [40] there are
10 areas of priority for CAVs policy and planning that need to be addressed for a smooth transition:
technology, legislation, crisis and employment ethics, road infrastructure and land use, integration, traffic safety,
cybersecurity and privacy, business models, traffic congestion and travel behaviour and finally acceptability,
trust and customer readiness. Even if adequate answers are provided to all the above critical themes
the future automobile fleet will be near homogenous no sooner than 2050 and only if CAV prices are
reasonably low [41].

To date, 623 peer-reviewed journal articles discussing CAVs are accessible in the Scopus search
engine. This number grows to 1688 research outputs when the search includes conference papers and
book chapters, with more than three-quarters of these outputs being published from 2015 onwards.
Nonetheless, the number of papers examining AVs is 20 times more. This is because connectivity
is a latter trend, despite being associated with Intelligent Transportation Systems (ITS) for decades,
that provides an additional dynamic communication function for a vehicle; AVs do not presuppose
(or necessarily exclude) connectivity but primarily refer to the vehicle’s ability to operate without
human input. This number of available scientific outputs showcases the immense interest in researching
an initiative with genuinely transformative powers.



Sustainability 2020, 12, 2789 9 of 19

4. Unmanned Aerial Vehicles and Personal Aerial Vehicles

Unmanned Aerial Vehicles (UAVs), also commonly known as drones or unmanned aircraft
systems, is a new powerful intervention that brings the revolution of AI and wireless technologies to air
transport and aviation. With the emergence of high-power-density batteries, long-range and low-power
micro-radio devices, cheap airframes and powerful microprocessors and motors, UAVs are tools with
the potential to provide robust solutions towards the provision of improved military, policing and
commercial services [42]. More specifically, UAVs can support tasks related to intelligence, surveillance
and reconnaissance, border patrol, target identification and designation, counter-insurgency, attack
and strike, civil security control, law enforcement applications, environmental monitoring, surveying
and geospatial activities, remote sensing, aerial mapping, weather monitoring and meteorology, forest
fire detection, traffic control, cargo transport, accident reporting, emergency search and rescue, disaster
control and management, wireless coverage, cloud support and communication relays. Many of these
tasks are barometers reflecting and affecting the day-to-day functionality and operability of a smart city.

UAVs can be broadly classified into two categories: fixed wing and rotary wing. Fixed-wing UAVs
usually have a high speed and a heavy payload, but they must maintain continuous forward motion to
remain aloft, and thus are not suitable for stationary applications like close inspection; meanwhile,
rotary-wing UAVs, such as quadcopters, while having limited mobility and payload, can move in any
direction and stay stationary in the air [43]. Challenges such as the lack of an onboard pilot to see and
avoid other aircrafts and the wide variation in unmanned aircraft missions and capabilities must be
addressed before the full integration of aerial technologies can take place in the smart city context [44].
Integrating UAVs with smart cities will create a sustainable economic environment and a peaceful place
of living if challenges relating, on the one hand, with business considerations like ethics and privacy,
cost, licensing, legislation and market adoption, and on the other hand, with technical issues, such as
the proper use of wireless sensors, data communications, application management, resource training
and allocation and power management are addressed adequately [45,46]. The key stakeholders for
addressing these challenges all have a distinct role. Governing bodies work on introducing regulations,
policies and operations guidelines to ensure the safe use of UAVs; researchers design models and
architectures to build, integrate and deploy UAV applications; and the industry aims to develop and
introduce value-added features to smart cities using UAVs [47].

Personal Aerial Vehicles (PAVs), Manned Aerial Vehicles (MAVs) or Personal Aerial Transport
Systems (PATS) are emerging forms of mobility that promise to combine the best of ground-based
and air-based transportation as a means of reducing urban congestion by making use of free space in
the air [48]. PAVs will be an innovative mobility intervention capable of bridging the niche between
scheduled airliners and ground transport by offering unprecedented levels of fast, on-demand urban
mobility. If higher automation and falling prices are achieved, PAVs will soon be able to serve the
urban settings of smart cities. Automation will allow PAVs to carry passengers with no piloting skills,
making them much more accessible to anyone in practical terms. Infrastructure requirements, such as
the number of landing and parking spaces, proper flying corridors, interaction with other modes and
synergies with autonomous ground vehicles (PAVs and CAVs can benefit and complement each other),
may allow PAVs to contribute significantly in the decrease of congestion and pollution if planned
and implemented in a right way [49]. Nonetheless, despite innovation progress in the PAV concept
development and related technologies, there are still key challenges that remain regarding public
acceptance, traffic safety, expensive infrastructure, disaster management, trespassing and unnecessary
surveillance, visual intrusion and excessive air traffic concerns [47,50].

The applications of UAVs are still fairly limited, while PAVs are still in the infancy phase of their
development trajectory despite claims from Germany’s Volocopter that it will start trials of a flying taxi
in Singapore in 2020 and Uber’s plans to launch commercial flights in the USA by 2023 [51]. To date,
we have more than 40,000 Scopus-indexed research outputs published almost solely on engineering
and computer science related aspects of the two innovations. In the literature, both are projected to
eventually morph to massive game-changers in urban mobility and facilitators of the smart city concept.
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5. Mobility-as-a-Service

Mobility-as-a-Service (MaaS) is a powerful notion, still in an embryonic stage of its development
when it comes to a full-scale implementation, but immensely hyped up. MaaS in its purest future
form is promising digital packages of personalised multimodal mobility that will replace privately
owned vehicles through the use of an all-in-one smart online platform capable of providing integrated
journey planning, booking, smart ticketing and real-time information services. If MaaS works as a
real substitute to private automobile ownership and transforms car use to a service provided strictly
on an as-needed basis, it has the potential to dramatically reduce the number of cars on the roads
and thus deliver huge reductions in travel delays, air pollution, noise nuisance, energy consumption,
and transport-related social exclusion, as well as provide benefits in terms of traffic safety and accident
prevention, health and wellbeing, social cohesiveness, accessibility and household expenditure. It will
also free up valuable living space from car traffic and car parking and will redistribute it to public and
active transport, but also to other more human-centric built environment investments.

To date, 115 peer-reviewed journal articles are accessible in the Scopus search engine; the number
grows to 259 research outputs if this includes conference papers and book chapters. The total body
of this literature has been exclusively published from 2011 onwards, with more papers being issued
every year. These studies cover many MaaS angles, including user experience [52–54], attitudes [55,56],
integration with public transport [57–59], business models [60,61], travel behaviour [62,63], governance
and policy [64,65], urban futures [66,67] and even Blockchain adaption [68].

These figures make it undeniable that the demand for MaaS research is not slowing down in the
foreseeable future despite the vagueness behind MaaS implementation specifics and the lack of a truly
cohesive and universal definition of the term. At present, there is a dichotomy between researchers
and developers thinking of MaaS primarily as a ride- and car-sharing scheme facilitator and others
advocating that MaaS should be a lot more than that. This means that given MaaS is not yet clearly
defined and contextualised, it is still very difficult to assess how MaaS can affect travel behaviour and
how it can help in transforming the future; or as Lyons et al. [69] notes: “there is very limited insight
to date in terms of the behavioural impact of MaaS or its future potential”. Regarding this context,
Kamargianni et al. [70] highlights that it is important to study not only MaaS as a whole, but also its
component elements (i.e., intermodal journey planners, payment methods, booking systems, real-time
information and mobility packages) and their influence on consumers in terms of enablers or barriers.

Examples of early applications of MaaS with variable levels of reach, continuity and success so
far include Whim in Helsinki and Birmingham; the pilot UbiGo in Gothenburg, which despite its
success, ceased to exist in 2014 but as of 2019 has been relaunched in Stockholm; Moovel in Hamburg
and Stuttgart; the year-long Smile pilot in Vienna, which has been replaced with the fairly successful
WienMobil Lab; the Italy-wide myCicero; the Scottish project NaviGoGo, which was operational in
Dundee and North Fife; the Hannovermobil in Hanover; Monpelier’s EMMA (TaM); and ALD Move,
which covers the whole of the Netherlands.

In theory at least, MaaS can maximise its potential if it incorporates in its very core the “cautious”
use of CAVs (and even PAVs when available) strictly based on car-sharing or (even better) ride-sharing
schemes. In this favourable (in sustainability terms) MaaS adaption scenario, CAVs can be first- and
last-mile neighbourhood feeders to mass transit systems running in transport corridors that clearly
prioritise or even enforce public transport use. If CAVs are shared as such, they might have the
potential to blur the lines between public and private transportation services altogether [71] and could
make MaaS appear as a less aggressive, controversial and restrictive mobility paradigm that, although
it does not entirely fulfil its institutional rhetoric of “individual unfettered freedom” (as discussed
in Pangbourne et al. [64]), makes a justifiable pro-sustainability compromise that includes, but is
not centred around, car access. The AI-centric digital services of MaaS will need to mix and match
multimodal trips on this premise.

Three key challenges affect the transition path to a MaaS-centric transport system. To identify the
biggest barrier to MaaS success, it is necessary to concentrate on the pervasive influence of cultural
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practices and the need to facilitate a change of attitudes to ownership, not only for the more tech-savvy
millennial generation, but for all people [72]. As attitudes towards owning versus leasing, renting
and sharing transport vehicles are changing [73] because of sustainability pressures and increasing
environmental awareness, MaaS could soon be more acceptable. Another problem that MaaS faces is
the complexity of building up seamless collaborations between actors responsible for its introduction
and operations management due to uncertainties in the business models [74] and/or due to conflicting
interests between the mobility providers that need to be working together [21]. Policymaking, through
research and development activities and trials, therefore needs to solve these cooperation problems by
providing definitive answers regarding the optimum brand of MaaS since, as Pangbourne et al. [64]
clearly suggest, promises of “efficiency” are not possible without government intervention. The third
challenge that we might be facing is a scenario where MaaS will “help” public transport users and
travelers with no driving license (or in the case of a CAV-based MaaS with no ability to drive) to create
unsustainable travel behaviour habits by taking advantage of door-to-door solutions without using
public transport. A modal shift to car-centric solutions will be everything that MaaS means to rectify.

6. Internet of Things, Physical Internet, Industry 4.0 and Their Role in Smart Transport

While the term Internet of Things (IoT) is increasingly used, there is no common definition or
understanding today of what the IoT actually encompasses [75]. For many, the IoT evolved as a
communication paradigm that envisions a near future in which the objects of everyday life will be
equipped with microcontrollers, transceivers for digital communication and suitable protocol stacks
that will make them able to communicate with one another and with the users such that they become an
integral part of the Internet [76]. The main enabling factor of this promising paradigm is the integration
of several technologies and communications solutions [77]. The IoT provides the ability to remotely
monitor, manage and control devices, and to create new insights and actionable information from
massive streams of real-time data [78]. It ultimately empowers an object to hear, see, listen, interpret
and communicate at the same time [79]. The IoT uses an integrated cloud architecture of networks,
software, sensors, human interfaces, 5G and data analytics for value creation [80].

The IoT is the technical backbone of smart cities and what makes them feasible; smart cities need to
have three key features that the IoT can provide: intelligence, interconnection and instrumentation [81].
The IoT will complement the evolution of ITS based on the concept of object-to-object communication.
ITS can provide the hardware element of the IoT with devices such as radio frequency identification
(RFID) tags and readers, sensor technologies, positioning systems and emerging technologies to collect
information about road conditions, traffic accidents, road repairs or the redesigning of avenues in the
environment where they are placed [82]. The IoT, when fully operational and able to maximise its potential,
will be the “glue” connecting the different components of the AI-centric travel eco-system, including
CAVs, PAVS, UAVs and all the MaaS-operated modes in general, including non-motorised travellers.

Two more important facilitators of the AI–transport–smart city nexus will be the Physical Internet
(PI, π) and Industry 4.0. The PI is a new concept for freight transportation and logistics aiming towards
improving the economic, environmental and societal efficiency and sustainability of the way physical
objects are moved, stored, realised, supplied and used all over the world [83,84]. It is an open global
logistics system founded on physical, digital and operational interconnectivity through encapsulation,
interfaces and protocols that will replace current analogue logistical models. Through the PI, freight will
move via distributed, multimodal transportation networks in which transit sites aggregate containers
from diverse origins to optimise the loading on the next segments [85]. The PI is a novel and complex
concept for the future of supply chain management and it will probably be based on and enabled
by a smart IoT system [86]. In the context of a smart city with urbanisation characteristics and the
increased use of online digital services, a PI-based approach for a freight transport will provide pure
and standardised digital data to the future city’s software-defined digital controller (i.e., the “city
brain”). This data will be an added valuable feed for AI and big data analytics machines of the “city
brain” and will support more efficient and optimal decision-making. The PI, in combination with AI,
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will ensure real-time decision-making to provide adaptable city conditions with online communication
and connected PI system elements, such as PI-containers (parcels, pallets), PI-movers (PI-trucks, CAVs,
UAVs) and PI-hubs (stores, warehouses). This novel and efficient orchestration of the key elements of
a logistics system will boost the quest for a smart, sustainable and resilient city. The PI is the transport
and logistics response (or adaptation) to Industry 4.0 [87].

Industry 4.0 or the Fourth Industrial Revolution (per Alexopoulos et al. [88]) started as a German
strategic initiative for pioneering manufacturing and has morphed into a transformative paradigm
representing the computerisation, automation, digitisation and informisation of industrial systems
that includes enabling technologies, such as the Cyber-Physical Systems (CPS), the IoT, Enterprise
Resource Planning (ERP) and cloud computing [89–93]. According to Lom et al. [94], other important
aspects of Industry 4.0 and key elements of the smart city initiative are the Internet of Services (IoS),
which includes intelligent transport and logistics (smart mobility, smart logistics) in particular, as well
as the Internet of Energy (IoE), which determines how natural resources (electricity, water, oil) can be
used appropriately.

In terms of a bibliography, the IoT, PI and Industry 4.0 are widely covered primarily from a
technical and computer engineering perspective; over 53,000, 10,500 and 26,000 Scopus-indexed
research outputs, respectively, are currently available to readers. Nonetheless, the current literature
still lacks efforts to systematically review the state of the art of these paradigm-shifting initiatives in
relation to smart city developments [95].

7. Definitions and Conclusions

Despite an abundance of quality research studies with a conceptual (or review-based) character that
have tried over time to express, describe and prioritise the diverse, versatile and dynamic dimensions
incorporated in each of the themes presented in our paper, including AI (e.g., [96–100]), smart city
(e.g., [101–105]), CAVs (e.g., [106–109]), UAVs and PAVs (e.g., [110–113]), MaaS (e.g., [114–117]), IoT
(e.g., [118–121]), PI (e.g., [122–125]) and Industry 4.0 (e.g., [126–129]), there is as yet no clear and
universally approved set of definitions that critically underpins the nexus of AI, transport and the
smart city.

After contextualising the diverse pieces of the future AI-centric transport eco-system of the smart
city and linking them together, this paper will now try to provide thorough and systematic definitions
for all of them. Table 2 provides an all-in-one reference point for the multidisciplinary audience of
city science scholars interested in this topical agenda. This would hopefully increase the visibility and
access of the still scarcely studied, in its totality at least, nexus of AI-transport-smart city.

The present work recognises the transformative ability of AI when it comes to the smart city
context and how it can be a paradigm-shifting force that will revolutionise mobility in an unprecedented
way. However, at the same time, it acknowledges that the machine-oriented identity of the new smart
mobility paradigm needs to operate within a responsible, sustainable and user-centred architectural
framework that “understands” and “satisfies” the human user, the markets and the society as a whole.
The promise of an autonomous, connected, shared and digitised transport service provision is not
enough if it does not facilitate efforts that lead to improved environmental conservation, resource
efficiency, productivity gains, social inclusion, integration, health and wellbeing. People need to
believe that a change could be genuinely beneficial for the many, that they can become active and
engaged participants of the new urban eco-system, and that they can sensibly utilise the opportunities
provided by the AI–transport–smart city nexus. For this to be achieved, as in every socio-technical
transition [130–132], creating trust is the key.
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Table 2. AI–transport–smart city nexus definitions: The lexicon of smart mobility.

Smart Transport Components Definitions

Artificial Intelligence (AI)
AI refers to a machine’s ability to simulate the human mind by interpreting data it

receives from its environment, learning from them and using that learning to
successfully complete tasks, even in the most unexpected and novel scenarios.

Smart City

Smart cities are those urban landscapes with the ability to embrace an integrated
brand of autonomous, connected, shared, digital and cloud-based technologies in

their strategic decision-making and operations to become more sustainable,
creative, informed, cost-efficient and people-focused.

Connected and Autonomous
Vehicles (CAVs)

A CAV is any vehicle that can understand its surroundings, move, navigate and
behave responsibly without human input, and at the same time has connectivity

functions enabling it to be proactive, cooperative, well-informed and coordinated.

Unmanned Aerial Vehicles (UAVs)
UAVs (also commonly known as drones) are smart aircrafts that can fly without the
onboard presence of pilots and can provide robust air transport solutions for the

provision of improved military, policing and commercial services.

Personal Aerial Vehicles (PAVs)
PAVs are flying people-movers, bridging the gap between scheduled airliners and
ground transport, offering unprecedented levels of fast, on-demand urban mobility

by making use of the free air space.

Mobility-as-a-Service (MaaS)

MaaS is a system that offers multimodal packages of personalised mobility that will
replace privately owned vehicles through the use of an all-in-one digital platform
that is capable of providing integrated journey planning, booking, smart ticketing

and real-time information services on a subscription or “pay-as-you-go” basis.

Internet of Things (IoT)

The IoT is a connectivity paradigm that empowers objects of everyday life to hear,
see, listen and interpret streams of big data and communicate with one another and

with users through integrated cloud technologies, software, sensors and
human–machine interfaces.

Physical Internet (PI or π)

The PI is a global concept for sustainable and efficient multimodal freight
transportation and logistics that optimises the movement, storage, supply and

usage of physical objects through the use of digital, automated, interconnected and
big data technologies.

Industry 4.0
Industry 4.0 is a transformative paradigm representing the computerisation,

automation, digitisation and informisation of industrial systems through the use of
technologies like Cyber-Physical Systems and the Internet of Things.

Trust should be built through information provision, awareness campaigning, research and
development investments, systematic trialing and piloting exercises and strategically designed
incremental implementation. Risks and poisonous side-effects, such as the possible increase of motor
traffic through the creation of more occupied and (scarily) unoccupied CAV trips supported by a
flawed MaaS business model that may still be primarily car-oriented should be eliminated for any
techno-centric transition to take off and maximise its potential. Intelligent innovation should also have
equally significant socio-centric dimensions.

Thus, it should be expected that the transition to the next mobility paradigm that will naturally
match the needs of the smart city will be lengthy, diverse and slow-paced with high levels of complexity
and uncertainty. Forecasting may not always be accurate in such a dynamic environment as the one of
the smart city. The successful application of AI requires a good understanding of the relationships
between AI and data on one hand, and transportation system characteristics and variables on the
other hand [5], such that even if the tools are readily available, change is not straightforward. Making
significant changes to an era defined by the human-driven, conventionally fuelled, privately owned,
unconnected and ground-based vehicle and its colossal impact on the urban development that dictated
how cities have been designed and built for over a century requires a strategic approach based
on determination, adaptability and flexibility. Changes in mobility provision cannot be rushed
unless technology, legislation, educational and moral frameworks supporting them are all in place
and are robust and mature enough to withstand a stratum of challenges, including unknown and
unprecedented ones.
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It should be clear that CAVs, UAVs, PAVs, MaaS and their enablers—AI, IoT and PI—are not a
panacea that will repair everything that is wrong with the notions and practicalities of urban mobility
and the smart city. Despite their transformative powers, these inspiring pillars of the forthcoming
travel universe cannot address all the problems that built environments and transport networks face
now and may face in the future on their own. Instead, they should be viewed as complementary pieces
of the multi-dimensional and interdisciplinary puzzle that smart city really is, and should be coupled,
as far as transport goes, with TOD, automated public transport, travel-demand management tools and
traffic-calming measures.

We must also appreciate that the smart city narrative in its totality is not exclusively about
transport, but has energy, telecommunication, waste management, food supply, water and wastewater,
infrastructure, smart building, public safety, business and industrial dimensions that need to be equally
catered for. However, AI, with its instrumentation and control, connectivity, interoperability, security
and privacy, data management, cloud computing and analytics functions, can again be a vehicle for
positive change in all the key ingredients that make up for the complete smart city framework. Finally,
in line with Komninos [133], this work highlights that the impact of smart cities reaches far beyond the
domain of cities per se, as it influences the challenges of global competitiveness, sustainability and
climate change, inclusion and employment.
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