

Review

# How Can Smart Mobility Innovations Alleviate **Transportation Disadvantage? Assembling a Conceptual Framework through a Systematic Review**

# Luke Butler <sup>1</sup>, Tan Yigitcanlar <sup>1,\*</sup> and Alexander Paz <sup>2</sup>

- 1 School of Built Environment, Queensland University of Technology, Brisbane, QLD 4000, Australia; luke.butler@hdr.qut.edu.au
- 2 School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; alexander.paz@qut.edu.au
- \* Correspondence: tan.yigitcanlar@qut.edu.au; Tel.: +61-7-3138-2418

Received: 26 August 2020; Accepted: 9 September 2020; Published: 10 September 2020



Abstract: Transportation disadvantage is about the difficulty accessing mobility services required to complete activities associated with employment, shopping, business, essential needs, and recreation. Technological innovations in the field of smart mobility have been identified as a potential solution to help individuals overcome issues associated with transportation disadvantage. This paper aims to provide a consolidated understanding on how smart mobility innovations can contribute to alleviate transportation disadvantage. A systematic literature review is completed, and a conceptual framework is developed to provide the required information to address transportation The results are categorized under the physical, economic, spatial, temporal, disadvantage. psychological, information, and institutional dimensions of transportation disadvantage. The study findings reveal that: (a) Primary smart mobility innovations identified in the literature are demand responsive transportation, shared transportation, intelligent transportation systems, electric mobility, autonomous vehicles, and Mobility-as-a-Services. (b) Smart mobility innovations could benefit urban areas by improving accessibility, efficiency, coverage, flexibility, safety, and the overall integration of the transportation system. (c) Smart mobility innovations have the potential to contribute to the alleviation of transportation disadvantage. (d) Mobility-as-a-Service has high potential to alleviate transportation disadvantage primarily due to its ability to integrate a wide-range of services.

Keywords: smart mobility; demand responsive transport; connected and autonomous vehicle; Mobility-as-a-Service (MaaS); electric mobility; shared transportation; intelligent transportation systems; smart city; transportation disadvantage; social exclusion

# 1. Introduction

In recent decades, rural-to-urban migration influenced by factors such as increased employment opportunities, access to services, education, and communication networks has led to a period of rapid urbanization [1]. Over 50% of the world's population live in cities with this number expected to increase to 68% by 2050 [2]. While the environmental impact of providing transportation infrastructure in growing cities remains a primary concern in research [3], another important challenge relates to the provision of an inclusive, accessible, and affordable transportation for all individuals [4]. This is important as having access to transportation is crucial to improve social inclusion and allow people to access essential services, employment, and recreational facilities. Access to transportation is a critical component in achieving quality of life—particularly among vulnerable groups such as the elderly and disabled [5].



Transportation disadvantage relates to an individual's ability to access transport and is particularly prevalent in areas without good access to public transportation. In these areas, individuals must rely on "private motor vehicles" (PMV), which typically come with higher costs than public transport due to purchasing, fuel, maintenance, insurance, and storage costs [6]. This combined with increased population growth has had a significant impact on property values with areas around public transport nodes experiencing higher property values [7]. Lower income earners are then forced into surrounding fringe areas, further increasing transportation costs and exacerbating issues surrounding transport disadvantage [8].

Smart mobility has been identified as a potential solution to alleviate many of the issues associated with transport disadvantage [9]. Smart mobility, a general term used to describe many of the transport-related technologies that have been implemented in urban areas, represents a new way of thinking about transportation including the creation of a more sustainable system that is able to overcome some of the issues associated with PMV [10,11]. While the number of research articles that focus on smart mobility is growing, little research to date has focused on how smart mobility can address transport disadvantage. Similarly, where specific smart mobility innovations, such as "autonomous vehicles" (AV), "flexible transportation services" (FTS), and "free-floating e-mobility" (FFM), or the integration of intelligent technologies have been investigated as a potential solution to transport disadvantage, they are often treated as separate entities with only a few comprehensive attempts to conceptualize how their integration can contribute to or alleviate the issue [12]. This requires explicit consideration as these changes do not happen in a silo, but are rather concurrent, or even dependent, on each other.

This paper attempts to contribute to existing research by analyzing the way that smart mobility innovations can address transport disadvantage in cities. Using a systematic literature review as the research methodology, this paper seeks to answer the research question: How can smart mobility contribute to alleviate transport disadvantage? To answer this question and ensure all technological advances are considered, we first reviewed the literature to determine the innovations relevant to the smart mobility field, how they relate to each other, and what the major benefits of these systems are to urban areas. Then, by looking through the lens of transport disadvantage, major contributions were identified and associated with our research aim and question. From the literature review, a conceptual framework representing the relationship between the benefits of smart mobility innovations and the various aspects of transport disadvantage was developed with the view that it could help researchers better understand the relationship between the two concepts. This paper also highlights future areas of research that can help other look to smart mobility innovations to alleviate issues regarding transport disadvantage.

#### 2. Background to Smart Mobility

Smart mobility as a concept has its roots within the smart cities model: driven by policy, technology, and community, the primary goal of smart cities is to deliver productivity, innovation, livability, wellbeing, sustainability, accessibility, and good governance and planning [13]. The conceptual framework shown in Figure 1 demonstrates this concept through a simple input–output–impact model. In the context of smart cities, the transportation system could be considered an asset of the city which is implemented through various drivers, including technology, policy, and community. When successfully implemented, these drivers should lead to more desirable outputs (or outcomes), the result (or impact) being a smarter city—or in this case a smarter mobility system [13].

Built into this concept of smart cities is the notion of smart mobility [10,14]. Similar to the broader smart city concept, smart mobility is partially driven by community and policy; however, much of the focus is on using technology as a way to transform the transportation system while addressing the societal, economic, and environmental impacts associated with PMV, including issues regarding transport disadvantage [15,16]. Some of these innovations such as "demand responsive transportation" (DRT) have been implemented by local governments as a way of offering services to those most in need

or replace underutilized public transport systems. They are often viewed more as an extension of the existing public transport network than a stand-alone system [17]. Similarly, ubiquitous infrastructure ("U-Infrastructure") harnesses technological advances in ICT, "intelligent transportation systems" (ITS), and digital networks to improve efficiency of urban infrastructure [18].

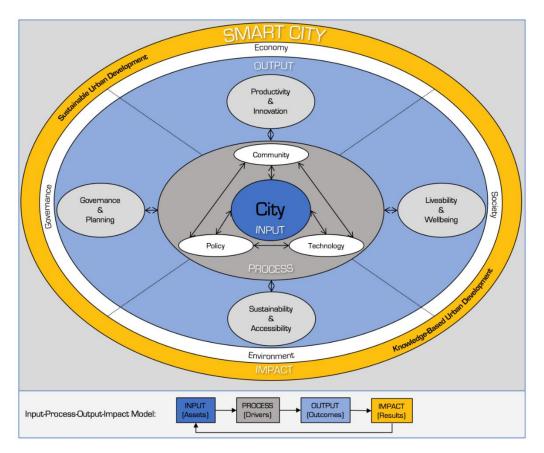



Figure 1. Smart city conceptual framework (derived from [13]).

Other systems including car sharing, ride sharing, FFM, AV, and alternative fuel vehicles are driven by private industry and with rapid advances in technology they are likely to disrupt the transport system, whether their benefits are harnessed by governments or they are left to evolve organically [19,20]. This was seen in 2015 in Australia following the introduction of Uber's ride sharing platform. Regulators were effectively left playing catch-up to a disruptive technology that was implemented and already in widespread use prior to the appropriate legislation being developed. The impact of this lack of foresight not only led to issues regarding overnight loss of value to taxi licenses [21] but has also led to concerns about the underpayment of workers [22], and an eventual oversaturation of the market [23].

There is an important distinction to be made here about how smart mobility innovation are introduced into the market and the importance of managing disruptive technology. While modern visions of smart mobility are generally optimistic and show a transportation system where everybody has equal access and PMV travel is replaced with services that users can access on-demand, the reality could be very different. In fact, as with the introduction of the automobile in the early 1900s, there is a risk that this new technology will create even greater issues that we were unable to see or predict due to a persistent cloud of optimism that shades our judgement. Thus, critical in the realm of urban governance is to develop an understanding of the potential contributions of smart mobility so that its impacts can be managed effectively and the societal, economic, and environmental objectives of the smart city are achieved [24].

The conceptual background for smart mobility outlined above underlines the importance of further investigating the contribution smart mobility can make to urban areas. This is particularly true with regards to the issue of transport disadvantage which could potentially risk further decline if smart mobility innovations are implemented into urban areas without any actions taken by decision-makers. Similarly, misunderstanding the potential benefits of smart mobility could lead to missing opportunities to improve the equity of the transportation system.

## 3. Materials and Methods

For this study, a systematic literature review was utilized as the methodology and based on the three-stage approach implemented by Yigitcanlar et al. [15]. The purpose of the review was to address the research question: How can smart mobility contribute to alleviate transport disadvantage?

The first stage in this process was planning. Our research objectives were defined as being to identify any relationship between smart mobility innovations and transport disadvantage. Based on this objective research aim and question, several keywords relevant to the subject area were developed. Primary inclusion criteria included articles that were peer-reviewed, published online, and in English. Secondary inclusion criteria were to only include articles that were relevant to the research aim. Exclusionary criteria were articles that did not meet the inclusion criteria. The keywords were then used to undertake an open-ended search to September 2020 using a university library search engine with access to 393 academic databases. Boolean search query was used with keywords, as shown in Figure 2. The initial search yielded 2136 articles.

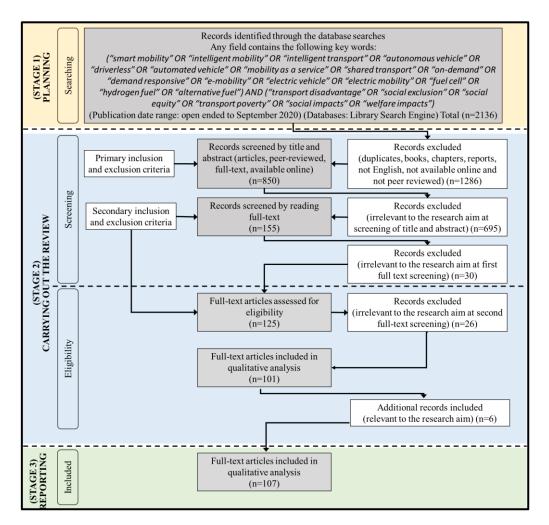



Figure 2. Literature selection procedure (source: authors).

The second stage of the process was performing the review. Abstracts of the proposed articles were scanned against the primary inclusion and exclusion criteria; duplicates and articles that did not comply with the criteria were removed. Following this, the full text of the remaining articles was read twice to ensure compliance with the secondary inclusion criteria. Articles irrelevant to the research aim were removed. In total, 99 articles were considered relevant to the research aim and included in the final qualitative review. Figure 1 provides a step by step outline of the literature selection and review.

The remaining articles (n = 101) were categorized using a directed content analysis method, whereby major themes were selected based on a theory or framework identified in the literature. An additional six publications relevant to research topic but not otherwise meeting the search criteria were also added to the study. As the purpose of the review was to determine the contribution smart mobility innovations could make to alleviate transport disadvantage, a framework was selected to ensure all relevant dimensions were considered. Based on a previous review of transport disadvantage by Yigitcanlar et al. [4], it was decided that Suhl and Carreno's [25] six dimensions for transport disadvantage—i.e., physical, economic, spatial, temporal, psychological, and information—would be used as it was the most comprehensive. The articles were then reviewed using a descriptive rather statistical technique. Pattern matching and other qualitative techniques, such as scanning for common subjects, were also used to group the articles into the pre-defined categories. As a result, relationships were identified between the transport disadvantage dimensions and the number of final categories reduced to three: (a) Physical and Economic (n = 39); (b) Spatial and Temporal (n = 33); and (c) Psychological and Information (n = 28). Following a review of the literature a seventh category, "institutional disadvantage", was also discussed (n = 7). A description of the relevant dimensions is shown in Table 1.

| Dimension     | Description                                                                                                                                                                                                                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical      | Relates to the physical barriers that may limit a person from accessing<br>transportation. Limitations may include inability to operate a motor vehicle and<br>inability to physically access a vehicle or public transport due to a disability.                                                 |
| Economic      | Relates to the economic barriers that may limit a person from accessing<br>transportation. Specifically concerns the personal cost of transportation and can<br>include ticket price, fuel, insurance, storage, purchase, and travel time.                                                       |
| Spatial       | Relates to the spatial barriers that may limit a person from accessing<br>transportation. Often associated with geographic-related transport disadvantage<br>in areas where public transport coverage is inadequate, and individuals are<br>forced to own PMV to satisfy transportation needs.   |
| Temporal      | Relates to the temporal barriers that may limit a person from accessing<br>transportation. Often associated with geographic-related transport disadvantage<br>in areas where public transport frequency is inadequate, and individuals are<br>forced to own PMV to satisfy transportation needs. |
| Psychological | Relates to the psychological barriers that may limit a person from accessing different transportation modes. This barrier can include issues associated with perception and safety.                                                                                                              |
| Information   | Relates to the information barriers that may limit a person from accessing different transportation modes. These barriers relate to an individual's ability to use and understand how to use transportation modes.                                                                               |
| Institutional | Relates to the institutional and governance barriers that may limit a person from accessing different transport modes. These barriers include policy, regulations, registration requirements, and other local laws that may limit an individual's ability to use transportation.                 |

| Table 1. Dir  | nensions of | transportation   | disadvantage | (derived  | from [4.25]). |
|---------------|-------------|------------------|--------------|-----------|---------------|
| Incle It Dit. |             | . tranoportation | anouavantage | (acritea. |               |

The third and final stage of the process was reporting. In this stage, the analysis of the 107 articles completed during the screening stage was used to present the results by preparing and writing the final article. Finally, additional publications (n = 31) were used to support our findings, elaborate on our results, and provide a contextual background to this research.

## 4. Results

#### 4.1. General Observations

Interest in the social issues surrounding smart mobility has grown over the past two decades. In fact, while only 2 of the selected articles were published before 2005, that number has continued to grow with 4 articles published during 2006–2008, 5 articles during 2009–2011, 13 articles during 2012–2014, 20 articles during 2015–2017, and 63 since 2018. Leading authors are affiliated with universities in Europe (n = 58), Oceania (n = 19), North America (n = 18), Asia (n = 9), South America (n = 1), and Middle East (n = 2). The articles were published in a wide-range of journal including Research in Transportation Economics (n = 9), Sustainability (n = 9), Transport Policy (n = 7), Journal of Transport Geography (n = 6), Transport Research Part A (n = 5), Transport Reviews (n = 4), Journal of Transport & Health (n = 3), Energies (n = 2), Energy Research & Social Science (n = 2), Land Use Policy (n = 2), Local Economy (n = 2), and Transportation Research Part D (n = 2). The remaining 41 articles were published in 36 different journals from a range of research areas including urban planning and policy, transportation, ethics, sociology, and health.

Articles were categorized into three groups based on the defined categories: Physical and Economic (n = 33), Temporal and Spatial (n = 31), and Psychological and Information (n = 26). With reference to the main smart mobility innovations, DRT were discussed in 40 articles, followed by AV (n = 38), ITS (n = 25), shared mobility (n = 17), "Mobility-as-a-Service" (MaaS) (n = 12), and "alternative fuel vehicles" (n = 12). Twelve articles discussed smart mobility generally but were not specific regarding technological innovations.

#### 4.2. Smart Mobility Impacts

This section discusses the main innovations identified in the literature that are associated with smart mobility and what impacts these innovations will make to transportation. Understanding the broad impacts each of the innovations will have on the transportation system is important so that the flow on effects can be analyzed against each of the transport disadvantage dimensions.

The six major smart mobility innovations identified in the literature are: (a) DRT; (b) shared mobility; (c) ITS; (d) alternative fuel vehicles; (e) AV; and (f) MaaS. ITS, alternative fuel vehicles, and AV represent direct technological advances that will affect vehicles and infrastructure. On the other hand, while technology is critical to the development of DRT, shared mobility, and MaaS, they are more associated with innovations to the way transportation services are provided to the community rather than a direct impact to the vehicles and infrastructure in the transport system. A description of each of these innovations and relevant literature is shown in Table 2.

| Innovation | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| DRT        | DRT provides a transportation options distinct from traditional fixed-route<br>services in that they utilize dynamic, semi-fixed, or fixed routes with users<br>able to pre-book based on travel needs and services operated on-demand.<br>The main impacts on the transportation system relate to ability to provide<br>greater coverage and flexibility. Although existing DRT services have been<br>criticized for their inability to manage high demand and provide the<br>required service coverage at an appropriate cost unless supported by other<br>innovations including ITS, AV, and shared mobility. | [26–33]   |

Table 2. Smart mobility innovations (source: authors).

| Table | 2. | Cont. |
|-------|----|-------|
|-------|----|-------|

| Innovation          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ST                  | Shared mobility refers to services where rides are shared with other users (e.g., ride-sharing) or vehicles are shared but used at different times (e.g., car sharing or bike sharing). Traditional types of shared mobility include car rentals, public transport, or taxis. Recent shared mobility innovations that make use of ITS, DRT, or battery-operated systems include FFM and peer-to-peer ride sharing apps such as Uber. The main advantage of shared mobility is that resources are shared among multiple users resulting in improved efficiencies in operation, storage, and cost. A move towards the shared mobility is a critical component for smart mobility innovations                                                                                                                       | [34–42]       |
| ITS                 | <ul> <li>including DRT, AV, and MaaS to achieve sustainable city goals.</li> <li>ITS refers to applications which utilize advances in ICT to effectively shared data between vehicles, infrastructure, and between users. ITS covers a broad range of applications including transport telematics, automatic information signs (ATIS), electronic ticketing, smart infrastructure, and in-car assistance, sensors, and other safety features. ITS is enhanced by advances in big data, Internet of things (IoT), cloud computing, and artificial intelligence (AI), which contribute to more efficient data collection, processing, and analysis. The primary advantage of ITS within the transportation field relates to its ability to optimize the performance of other technological innovations.</li> </ul> | [43-46]       |
| Alternative<br>Fuel | Alternative fuel vehicles refer to those vehicles which do not rely on<br>petroleum-based fuel sources. These vehicles use batteries for their primary<br>fuel source, which in turn are fueled by non-petroleum sources such as the<br>electrical grid, hydrogen, or solar power. Most literature focuses on the<br>environmental benefits of this technology. However, with reference to<br>transport disadvantage, the primary benefits of battery-operated vehicle<br>relate to the convenience of FFM which provides users an assortment of<br>conveniently placed powered transportation options which they can<br>access on-demand.                                                                                                                                                                       | [47–50]       |
| AV                  | AV refer to vehicles that can be operated without input of a human driver.<br>While there are various levels of autonomy for the purpose of this article<br>any reference to AV assumes the vehicles can operate without human input<br>in all conditions—unless otherwise stated. The primary advantage of AV<br>relates to improved accessibility, operational efficiency, and safety.<br>MaaS is a concept whereby a range of transportation options,                                                                                                                                                                                                                                                                                                                                                         | [51–57]       |
| MaaS                | including ride-sharing, car-sharing, public transport and FFM, is offered to<br>customers via a single online platform, or app. Users subscribe to the<br>service which gives them access to various transport options that were<br>traditionally offered separately. The advantage of MaaS is that as an<br>integrated system it can provide the platform from which mobility<br>providers are able to shared resources, and could contribute to better<br>transport outcomes as any issues can be better considered by looking at the<br>transport system as a whole rather than only concentrating on individual<br>parts. MaaS can also provide the operational structure from which new<br>transport innovations are released into the market.                                                              | [24,38,58–60] |

The innovations often overlap to optimize the potential positive impacts. DRT systems and AV enabled by ITS technology are often referred to as real-time or dynamic FTS [61] and connected AV (CAV), respectively [55,62]. Shared AV (SAV) incorporates elements of shared mobility and AV [44], and FFM is essentially a combination of shared mobility, battery electric vehicles, and DRT [63]. MaaS forms an overarching platform in which each of these services can be bundled together [64]. A conceptual diagram is shown in Figure 3 to better understand the relationships between these innovations. This diagram is by no means exhaustive, for example free floating e-mobility incorporates elements of ITS, and, when offered as a bicycle service, it might not rely on electric powered engines. In addition, DRT are typically offered as shared mobility to improve efficiency and costs [65]. Nonetheless, the figure

provides a conceptual outline to better understand the relationships between the various smart mobility innovations identified in the literature.

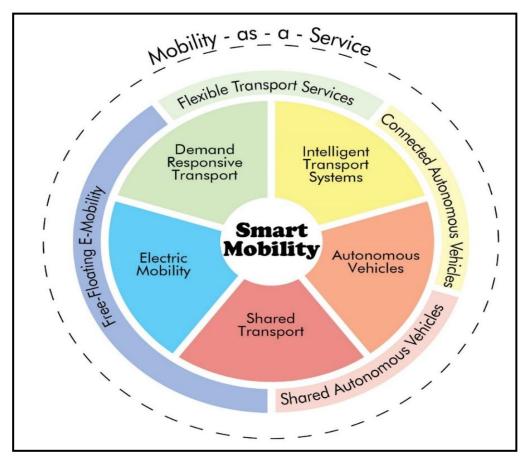



Figure 3. Relationship between smart mobility innovations (source: authors).

#### 4.3. Physical and Economic Dimensions

This section discusses how smart mobility innovations can contribute to the alleviation of the physical and economic dimensions of transport disadvantage. Based on the reviewed literature smart mobility could alleviate the physical and economic dimensions of transport disadvantage by: (a) improving accessibility to transportation for those unable to access or operate a vehicle; (b) creating a transportation system in which services are more responsive to user needs; (c) reducing the cost for users by improve the efficiency of the transportation system and promoting a move towards shared mobility; and (d) improving the "value of time" (VOT) spent in transit. A list of all reviewed literature is shown in Appendix A.

Firstly, various smart mobility innovations have been shown to improve accessibility for those physically unable to access transportation or operate a vehicle. Access to a vehicle is an important factor in maintaining a good standard of living and providing security and freedom of movement to access social activities, employment, and other services, including healthcare [57,66], particularly in low-density areas [67]. DRT services that provide door-to-door transportation have been shown to improve user accessibility by reducing issues surrounding the first- and last-mile access of public transport [68]. In fact, when compared to traditional public transport services, one study showed high satisfaction with flexible DRT services resulting in a doubling of older users [69]. Furthermore, when operated as a shared service they have been shown to increase social interactions resulting in reduced feelings of isolation [68].

Despite the benefits of DRT, another commonly cited innovation to improve accessibility relates to AV [57,70]. As AV are able to drive without human input, the elderly, disabled, young, unlicensed, and those unfamiliar with local conditions may no longer be excluded from operating a PMV [51,71–73]. Even in a semi-AV setting, in-vehicle technologies such as crash avoidance; warnings for lane departure, collision, and blind spots; navigation systems; parking assistance; and adaptive cruise control may result in more elderly residents being able to hold onto their license for longer [52,74]. Some may also benefit from improved access to FFM including bike sharing, which would add additional accessibility options—particularly for short distance trips [75]. Due to these advantages, it is important that these services are implemented with regulations to ensure equal access [40].

Nevertheless, increased accessibility means that there is a risk of increasing accessibility to PMV. This could result in more demand for car ownership and increased per capita "vehicle kilometers traveled" (VKT) [10]. This premise is supported by research which predicts that AV will result in a mode shift away from public and active transport, increasing total VKT by 15–59% [57]. This could lead to increased externalities including congestion and urban sprawl and result in greater infrastructure and transit costs [53,57,76]. Due to this potential impact, researchers consistently highlight the benefits of shared mobility [53,56]. If fact, research shows that SAV would actually decrease VKT by 10–25% [57]. However, this shift is dependent on how shared mobility appeals to consumers and will require a significant cultural shift supported by policy and regulation, public awareness campaigns, and land use interventions—particularly in areas where PMV is the dominate mode choice [66,77].

Secondly, smart mobility innovations present an opportunity to provide services to the transport disadvantage populations that are more responsive to their specific needs. In fact, when enabled by other smart technology, DRT systems have been able to use advances in data collection, distribution, and analysis to improve decision-making, simplify ticketing, and enhance route planning, scheduling, and vehicle selection [29,78,79]. Data obtained from smart ticketing systems can be integrated and used to analyze the behavior of passengers and identifying service gaps [80]. AV are also important because without the need for a driver the internal layouts can be reconfigured to provide comfort and access based on special needs [72].

This is important as studies have found that, for shared mobility to be appealing, it needs to be flexible and able to satisfy individual needs—particularly with regards to having both on- and off-peak access to employment, healthcare, and recreational areas [81]. Integrated services such as MaaS can help by facilitating better multi-stakeholder collaboration and the sharing of information. The needs and trends of each individual user can then be used collaboratively to support the day-to-day operation of the entire system [82] and connect potential users with the most suitable providers [42].

Thirdly, there is potential for smart mobility to reduce transportation costs by improving the efficiency of the transportation system and promoting a move towards shared mobility. The integration of services through a MaaS-like system and the use of ITS has the potential to reduce administration and management costs. Cost savings related to the design of transportation systems could theoretically be passed onto the consumer or used to supply transportation services to the disadvantaged [24,79]. Using shared mobility as a replacement for PMV would also remove many of the economic barriers associated with ownership—e.g., purchasing, maintenance, insurance, and storage costs [39]. Parking costs would also be reduced under a shared system as vehicles would spend less time in idle [34,83]. However, the distribution of shared services is likely to favor areas with high demand and is unlikely to reduce issues associated with geographic-related transport disadvantage. Furthermore, disability related disadvantage is unlikely to benefit from car and bike schemes alone [34]. AV would be beneficial in this regard as removing the need for a driver would significantly reduce operational costs and help solve issues associated with accessibility. In fact, SAV have the potential to reduce total transportation cost by over 80% when compared to traditional PMV [39].

However, new technology also brings high upfront costs and low short-term return on investment. Thus, while research continues to show that there is a huge demand for more sustainable vehicles [84], residents are willing to pay extra for more environmentally friendly options [49], and shared mobility is cheaper than car ownership [85], it may be difficult to guarantee economic sustainability—particularly in the short term. For example, while the use of alternative environmentally friendly fuels often achieves better economic performance, the high cost of vehicles—particularly hydrogen fuel cell vehicles—can make the economic sustainability of such vehicles difficult [48]. Similarly, despite potential for lower maintenance costs, reduced accidents, and overall efficiency, the high upfront cost may limit potential for market penetration [85].

Finally, cost alone might be not be enough to sway users to a shared system. In fact, in many countries, the modes with the lowest cost of operation—e.g., public and active transportation—are often not the ones with the highest market share. Other factors, such as comfort and prestige, also play a part [39]. AV could transform interior of private vehicles into mobile offices, dwellings, or entertainment and communication hubs improving the VOT by facilitating the ability to work, eat, socialize, and rest while in transit [56]. This could improve work life balance and reduce stress—particularly among those who travel regularly. Conversely, increasing VOT may also lead to an increase in VKT, further exacerbating issues associated with infrastructure demand and urban sprawl [39,86].

From an economic perspective, the increase in demand for private AV may also lead to disadvantaged populations being priced out of the market, leaving them unable to benefit from the advantages of the technology [40,56,87]. Similarly, with alternative fuel vehicles, users unable to afford the new technology may be charged with a Pigouvian tax to discourage the use of fossil fuels [47,50,88,89]. Increased use in private AV and shared mobility may also lead to a reduction in public transport use, reducing revenue and resulting in higher costs and future degradation of services. This is likely to impact lower income and geographically disadvantaged residents the most [56,90].

There is also economic risk associated with an integrated transportation system such as MaaS. Where a single entity is responsible for the selection and distribution of mobility providers, the system itself may become a barrier to new transportation companies entering the market. This could result in monopolization, increasing the risk of uncompetitive markets, price gouging, and other unfair businesses practices [76,91]. Conversely, government control could create tension with the private sector, which is critical in the development and funding of new transportation innovations [24,76]. If we are to rely on private companies to provide most of the services, it is unlikely that off-peak and low demand services would be provided, and significant subsides, political engagement, and planning would be required to ensure that societal goals are being maintained [92].

#### 4.4. Spatial and Temporal Dimensions

This section discusses how smart mobility innovations can contribute to the alleviation of the spatial and temporal dimensions of transport disadvantage. Due to the association with time and distance, this dimension is most closely related to issues surrounding geographic-related transport disadvantage. Based on the reviewed literature, smart mobility could alleviate the spatial and temporal dimensions of transport disadvantage by: (a) filling gaps in the public transport network by improving the coverage and frequency of services; (b) strengthening the connection with public services by designing services to act as a feeder system which connects to major public transport nodes and employment centers; (c) improving the flexibility of public transport by offering services on-demand; and (d) creating more transportation choices in areas where choice is traditionally limited. A list of all reviewed literature is shown in Appendix A.

Firstly, literature on smart mobility consistently identifies smart mobility innovations as a way to fill gaps in the public transport network. In doing so, smart mobility can contribute to improved coverage and frequency of services [43,93]. DRT services, in particular, have been highlighted as a way to provide door-to-door transportation by using fleets of smaller shared vehicles as opposed to fixed route services [94]. Other advantages of using smaller vehicles over traditional buses is that they have a lower operational cost per passenger and can access areas with smaller road widths [94]. However, these services often require significant government subsidies as they do not have the required number

of users to support profitability over the required coverage [35,95]. While subsidizing these services may be more economical than providing fixed route public transport [96], ITS can also help better match supply and demand and develop locally specific strategies that also contribute to lower costs and better efficiency [95,97]. ITS has been shown to allow better real-time control over the networks and enhance the potential for DRT to provide increased flexibility and greater coverage while bringing costs closer to that of public transport [27,43]. SAV has also been identified as a way to improve coverage particularly by reducing the instance of dead runs [33,98].

Notwithstanding, there will also be issues associated with providing the necessary infrastructure to facilitate suitable network coverage [99,100]. Furthermore, when promoting alternative fuel vehicles that generate electricity from the grid, there may be issues associated with grid capacity. Infrastructure issues are intensified in low density and rural areas due to inadequate infrastructure and longer transmission distances [47,50,101]. As such, low-density areas would still attract higher transportation costs than high density areas, and significant investment is required for ensure geographic equity [101]. One solution relates to cross-subsidization where profits made in areas with high demand are used to subsidize and fund the required infrastructure in areas with lower demand [47,95]. By sharing information and resources across the transportation system MaaS can help facilitate this cross-subsidization to ensure maximum profitability and promote social equity [83]. Furthermore, since subsidies may make low density housing more attractive, planning interventions that promote walking, cycling, higher densities around employment and transit centers, and investment in high speed public transport remain important [59,102].

Secondly, smart mobility can be used to support investment in high-speed public transport by using innovative services to act as a feeder system, which acts as a first- and last-mile connection to major public transport nodes and employment centers [96]. Theoretically, improved access to public transport would reduce car dependency and therefore reduce transportation costs [103]. DRT systems could be timed to public transport hubs to ensure reductions in transfer times. Public transport would therefore form the backbone of these "pulse networks", which could also allow for integrated ticketing and services [103]. The overall coverage of these networks could be supported by shared mobility such as FFM that would provide connections for shorter distances and provide more transportation options [37,104]. By limiting long trips, directly into denser urban areas congestion will be reduced, which means individuals who are required to travel by PMV will likely see a reduction in fuel price and time spent in traffic [96].

Efficient trip chaining is also important as studies have shown that users are more sensitive to travel time than travel cost; thus, ensuring transfers are easy and free from unnecessary delays can contribute to improving the appeal of public transport [105]. ITS has a role in improving the efficiency of these transfer, by improving the ability to apply real-time alterations to routing [26,104,106]. In fact, studies have shown that DRT services that connect directly to major transportation hubs and are enabled by ITS contribute to increases in total public transport ridership [27,107]. Furthermore, significant modal shift away from PMV has been observed when "artificial intelligence" (AI) is used to configure routes to reduce travel time [108] or through the use of MaaS systems to create synergies between mobility providers [109].

Thirdly, by improving the flexibility of public transport and offering services on-demand, transportation systems can be designed to respond directly to the specific geographic and social characteristics of the local area [32,97]. For example, in some areas, such as those with large numbers of tourists, conventional public transport with fixed schedules and timetables may be more advantageous [28,110]. In addition, in areas with higher numbers of people unable to operate a vehicle, car sharing schemes should be limited in favor of more flexible routes and timetables [111]. Similarly, in very low-density areas, semi-fixed, as opposed to door-to-door, services may be more efficient [33]. In designing transportation systems, planners should consider how changes respond to local characteristics and ensure the optimal allocation of available resources [32]. Furthermore,

any local transportation plan should be able to be scaled up if demand increases to ensure equal and equitable coverage [96].

Finally, using smart mobility to create more options for users in areas where transportation choice is limited can be beneficial [59]. Having more mobility options available to users has been identified as an important step to overcome the culture of PMV ownership. Similarly, supportive policies with awareness of shared services would be useful [112]. MaaS provides an opportunity to bundle services and offer a range of options to consumers through a single online platform [83,109]. Alternatively, transportation choice may also include the choice to not travel. Advances in the design of digital neighborhoods, smart homes, ICT, and home delivery has the potential to remove the need for physical trips—particularly those related to employment [94,112]. Similarly, with the view to reduce PMV, ICT and data obtained from ITS can be used to help residents make more informed decisions regarding residential or work location [113].

#### 4.5. Psychological and Information Dimensions

This section discusses how smart mobility innovations can contribute to the alleviation of the psychological and information dimensions of transport disadvantage. Based on the reviewed literature, smart mobility could alleviate the spatial and temporal dimensions of transport disadvantage by: (a) improving the safety of travel; (b) improving the perception of existing transportation options; and (c) improving the ability to make informed decisions. A list of all reviewed literature is shown in Appendix A (Table A1).

Firstly, smart mobility innovations have been shown to contribute to improved safety in the transportation system. This is important as the perception of safety is critical to ensure individuals want to use smart mobility [54]. AV have the potential to significantly reduce the number of vehicular accidents caused by human error [54,55,114]. CAVs can use advances in ITS, ICT, and AI data processing to communicate with other vehicles, infrastructure, and sensors, identifying dangers early and further improving safety for drivers and pedestrians [55]. In addition, given that no driver is required in the internal configuration, it can be reconfigured to add to the safety of the vehicle [55]. Similarly, DRT that offers door-to-door transportation and shared mobility are perceived as a safer option than public transport—particularly at nighttime [30,31,115].

Nonetheless, from the perspective of the user, safety not only comes from feeling safe while engaged in journey, but also with regards to digital safety [36,116]. In fact, lack of trust in technology is consistently identified as a reason for not using new transport technologies, particularly among the elderly [54,117–119]. This is understandable as increased reliance on technology introduces additional risks including those related to data privacy, cyberterrorism, grounding of fleets due to grid failures, faulty data [55,120], unconscious bias [114], and questions of legal liability [121]. To build trust, significant investment is required in cyber and data safety. Information campaigns are also beneficial to garner support among late adopters [119].

Secondly, there is potential for smart mobility innovations to improve the perception of existing DRT and public transport systems. Many DRT have been implemented around the world; however, the perception of these services is often that they are for the old and disabled—even when they are offered to all in the community [122,123]. Furthermore, users who benefit the most from the services are often confused and unclear about how these new transportation services could serve them [123–125]. In fact, research has shown that attitudes towards smart mobility among those with disabilities was entirely dependent on having prior knowledge of the technology [125]. Those with more knowledge tended to be more positive [126].

More information about potential routes and scheduling could help users better navigate new transportation innovations [124]. MaaS can help with this by providing all services and relevant information through a single digital platform giving users unbiased choice of various modes [38,60]. In addition, as all services are effectively bundled together, any offerings that are targeted towards

those with special needs may no longer be viewed as an entitlement but would instead be part of a city, regional, or nationwide system that is synergized to benefits all of society [58].

Finally, smart mobility could improve the ability for commuters to make informed decisions. Technological advances in ITS can facilitate the collection and analysis of large amounts of data from cameras, sensors, vehicle locations, smart ticketing systems, social media, credit cards, mobile phones, and many other sources [13,45,127]. Automating the analysis of this "big data" could help individuals with route planning and vehicle selection [44,46,128]. The ability to make informed decisions based on real-time data can help commuters reduce uncertainty, fear, discomfort, enhance user experience, and improve confidence [44,45,115].

However, given the reliance on smart technology, there are issues associated with technical literacy and the digital divide [36,38,116,117]. The digital divide refers to the gap between those who can access ICT and those who cannot. This issue is not only associated with the spatial distribution of network coverage or equality of access to physical smart devices but also the ability for particular socioeconomic groups to use and understand the technology [36,117,127]. Statistically, the elderly, lower income, female, and disabled are less familiar with new technology due to lower lifelong exposure to ICT. Therefore, they often struggle to quickly learn the required skills to access and pay for digital services [117,127,129]. This is where an integrated system such as MaaS can help. By integrating a range of mobility providers into a single platform, it could simplify the process for accessing transport by reducing complexity and the need to cycle through various mobility applications [127]. Stakeholder engagement and public participation is also important to understand existing challenges within the community [130].

#### 4.6. Institutional Dimensions

Upon review of the literature, a seventh and final transport disadvantage dimensions has emerged. The "institutional" dimension includes institutional and governance related barriers including policy, regulation, and institutions that may limit an individual's ability to use a transport mode or service. Based on the reviewed literature, smart mobility innovations do not necessarily directly contribute to the alleviation of this barrier. However, given the fast pace nature of technological change within the transport sector—including widespread trials of smart mobility services including DRT, AV, and MaaS and the rapid emergence of new technologies associated with car-, bike-, and scooter-sharing—it is important that decision makers understand the strengths and weakness associated with them so that opportunities and risks can be identified. This is important because public sector does not necessarily function adequately in times of uncertainty [76] and a failure to address the short- and long-term issues associated with these transport services could exacerbate negative externalities associated with the transport system. It is therefore important that strategies remain flexible so that they can adapt to changing circumstances and community needs [30,131].

It is critical that institutional barriers do not inhibit the ability for users to access services which could have wider societal benefits including high cost and inconvenience of registering for new services [132], laws that explicitly ban the use or inhibits the ability to use a mode or services within a particular area [133], or lack of available infrastructure to support mode choice—e.g., lack of dedicated active and public transport infrastructure [134]. Of equal importance is the use of institutional measures to promote and support the development of smart mobility. These could include: (a) establishment of standards for data management and sharing, which should be established on a national or transnational level [135]; (b) institutional support structures to assist with community adaptation to new technology, particularly among disadvantaged groups including elderly, migrants, or disabled [136]; (c) development of parking restrictions to discourage private vehicle use [131], engaging the public in decision-making [130]; and (d) ensuring public value and societal goals are maintained [24,137].

#### 5. Discussion

## 5.1. Key Findings

This review study investigated the impact of smart mobility innovations through the lens of transport disadvantage. Specifically, the review sought to answer the research question: How can smart mobility contribute to the alleviation of transport disadvantage? Firstly, some common smart mobility innovations were identified and the relationships between these innovations shown. These innovations include new vehicular and infrastructural innovations such AV, ITS, and alternative fuel vehicles, in addition to new and existing ways of offering services to the community including DRT, shared mobility, and MaaS. These innovations will likely benefit urban areas by improving accessibility, efficiency, coverage, flexibility, safety, and integration of the transportation system.

The study also showed how smart mobility innovations have the potential to contribute to the alleviation of all six dimensions of transport disadvantage: (a) physical; (b) economic; (c) spatial; (d) temporal; (e) psychological; and (f) information. We also discussed some implications associated with a seventh, "institutional", dimension. Potential risks have been identified, and there are a number of key actions that can be taken to alleviate these risks. Of these actions, the implementation of MaaS and shared mobility appears as a common thread to overcoming the risks associated with smart mobility.

Firstly, a move towards the shared mobility is critical to ensure resources are shared efficiency and services offered have the required accessibility, coverage, and flexibility to reach all users and do not result in excess consumer costs or reliance on government subsidies. This conclusion is reflected in studies on DRT [66], AV [39,40,52], and MaaS [40].

Secondly, the review showed that it is often a combination of innovations that will best benefit the transport disadvantage. For instance, DRT and AV are shown to work more efficiently, and safely, when enabled by ITS and other smart technology including big data and cloud computing. Furthermore, the negative externalities associated with AV use, including increased VKT, suburbanization, and infrastructure demand, are significantly reduced when operating within a shared economy. This highlights the specific advantages of MaaS, which as an integrated system can provide the operational structure from which new innovations are trialed and released into the market. It also can help connect users to shared mobility and provide a platform from which mobility providers share resources. Sharing data between mobility providers could help decision-makers achieve better outcomes as issues associated with transport disadvantage can be considered by looking at the transportation system as a whole rather than concentrating on individual parts. Similar conclusions regarding the importance of MaaS as an overarching operational structure is supported by a number of studies including Gonzalez-Feliu et al. [82], Mulley and Kronsell [58], Soares Machado et al. [38], and Beecroft et al. [116].

Lastly, a summary of smart mobility potential contribution and risks and their association with transport disadvantage dimensions is shown in Table 3.

#### 5.2. Conceptual Framework

Within the realm of smart mobility, a key challenge to overcome transport disadvantage is to understand how the specific benefits of new transportation innovations can be harnessed to respond to each of the dimensions of transport disadvantage. The results of the literature review highlight important relationships between the benefits of smart mobility innovations and the different dimensions of transport disadvantages. Specifically, the review showed that the benefits of smart mobility can be specifically aligned with the corresponding transport disadvantage dimension. A conceptual framework showing the relationship between these factors is shown in Figure 4. For the purpose of providing a conceptual framework related to how smart mobility can alleviate transport disadvantage, the institutional barrier has been excluded from the framework as it is not a barrier that can be overcome by smart mobility innovations alone. Nevertheless, supportive policy, regulations, and other governance structures are critical to the implementation smart mobility in a way that strengthens its benefits while responding to issues of transport disadvantage.

| Dimension     | Contribution                                                                                                                                                                                           | Risk                                                                                                                                     | Potential Actions                                                                                                                                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical      | Improved accessibility to vehicle<br>Door-to-door transportation<br>Connection to public transport<br>Increased social interactions<br>More transportation options<br>More responsive to specific need | Unequal access to services<br>Increased VKT per capita<br>Increased suburbanization<br>Unappealing to user                               | Integration of services (MaaS)<br>Marketing and education<br>Policy and Regulation<br>Promote shared mobility                                                                |
| Economic      | Improved efficiency of system<br>Reduced consumer costs<br>Increased VOT                                                                                                                               | Unequal access to services<br>Increased VKT per capita<br>Increased infrastructure demand<br>Increased suburbanization<br>Monopolization | Integration of services (MaaS)<br>Promote shared mobility<br>Land use planning interventions<br>Subsidies<br>Stakeholder engagement                                          |
| Spatial       | Improved coverage of services<br>Fill gaps in public transport network<br>Feeder system to public transport                                                                                            | Increased infrastructure demand<br>Network coverage<br>Grid capacity<br>Unequal access to services                                       | Active transportation infrastructure<br>Cross-subsidization<br>Digital neighborhoods<br>Integration of services (MaaS)<br>Marketing and education<br>Promote shared mobility |
| Temporal      | Improved flexibility of services<br>Better real-time control of network<br>Better match supply and demand<br>Reduced transfer times<br>Reduced congestion                                              | Routing should be specific to needs                                                                                                      | Analysis of local characteristics<br>Digital neighborhoods<br>Invest in intelligent technology (ITS<br>Integration of services (MaaS)<br>Marketing and education             |
| Psychological | Improved safety of vehicle<br>Safety of door to door transportation<br>Improved perception                                                                                                             | Data safety<br>Cyber safety<br>Unconscious bias<br>Legal liability                                                                       | Invest in intelligent technology (ITS<br>Marketing and education<br>Promote shared mobility                                                                                  |
| Information   | Improved integration<br>Improve decision-making                                                                                                                                                        | Digital divide<br>Technology literacy                                                                                                    | Integration of services (MaaS)<br>Invest in intelligent technology (ITS<br>Stakeholder engagement                                                                            |
| Institutional | Opportunity for change                                                                                                                                                                                 | Rapid technological change<br>Increase negative externalities<br>Lost opportunity                                                        | Adaptive policy and regulations<br>Supportive governance structures                                                                                                          |

Table 3. Summary of literature review findings (source: authors).

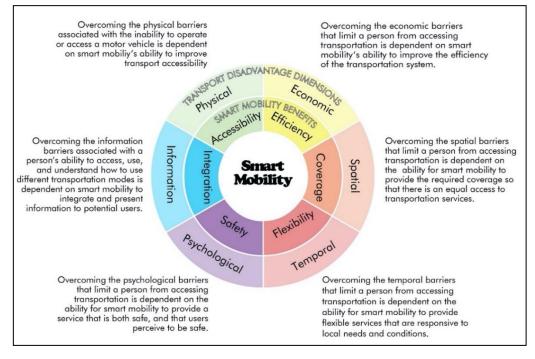



Figure 4. Conceptual framework of smart mobility and transportation disadvantage (source: authors).

Firstly, when looking through the *physical* dimension of transport disadvantage, the primary contribution of smart mobility is its ability to improve transportation *accessibility* through implementation of AV, flexible door-to-door transportation, strengthening connections with existing public transport networks, providing more mode options, or specifically targeting user needs. Similarly, when looking through the *economic* dimension of transport disadvantage, the primary contribution of smart mobility is its ability to improve transportation *efficiency*, which could contribute to reduced consumer costs—whether by reducing cost of actual travel or increasing the VOT spent in traffic.

Secondly, when looking through the *spatial* dimension of transport disadvantage, the primary contribution of smart mobility is its ability to improve transportation *coverage* by filling gaps in public transport or acting as a feeder system to major public transport nodes. Similarly, when looking through the *temporal* dimension of transport disadvantage, the primary contribution of smart mobility is its ability to improve *flexibility* by moving towards dynamic routing of transportation services, having more real-time control over the transportation network, better matching supply and demand, reducing transfer times and reducing congestion for those who are required to travel by PMV.

Finally, when looking through the *psychological* dimension of transport disadvantage, the primary contribution of smart mobility is its ability to improve transportation *safety*, whether through the use of AV which removes the need for a human driver, ITS that communicate with vehicles and drivers regarding potential hazards, or door-to-door transportation that removes safety concerns associated with accessing fixed-route public transport stops—particularly in low occupancy areas. Similarly, when looking through the *information* dimension of transport disadvantage, the primary contribution of smart mobility is its ability to integrate a wide range of data and services which can be used to improve decision-making whether those decisions are made autonomously or following analysis of available data regulators, mobility providers, and users.

Given the relationship between smart mobility and transport disadvantage, the challenge for decision-makers and mobility providers is to analyze specific case study areas to determine the issues associated with transport disadvantage that are most relevant. From there, the smart mobility benefits that most closely represent each of these dimensions can be used to identify which innovation is best suited for the local area.

#### 5.3. Research Directions

Few studies identified in this review considered the six smart mobility innovations together as a broad driver for change in the transportation system. Given that alternative fuel vehicles, such as battery electric and hybrid electric, and ITS have already started to be introduced into urban areas, and trials of AV are prevalent throughout the world, it is problematic to analyze each of these technological drivers as individual entities that will not interact and influence the success, or failure, of each other. The management of these technological innovations is therefore necessary to harness their benefits in response to transport disadvantage. That is why new operational structures and ways of looking at the transportation system including DRT, shared mobility, and MaaS remain important.

Nonetheless, while DRT systems are not new and have been implemented throughout the world—as an alternative to public transport and targeted toward those experiencing disadvantage—it has developed a stigma whereby it is often viewed as an option for only the aged and disabled. Similarly, shared mobility offered by private industry including ride-sharing, car-sharing, and FFM are typically targeted towards users in centralized, denser areas where the highest demand is available to ensure maximum profit. These services, therefore, rarely benefit those experiencing transport disadvantage, and often only exacerbate existing issues with unequal accessibility. As an integrated service, MaaS represents a new way of branding DRT, while enhancing public transport, shared mobility, and other elements of the transportation system. Furthermore, MaaS presents a unique opportunity to provide the platform from which new innovations are introduced into market, the data analyzed, shared, and used to assess its suitability for alleviating transport disadvantage, and other related issues. Prospective research should, hence, look at ways to use MaaS to harness the benefits of smart mobility innovations and attract users to shared mobility and public transport. MaaS is a relatively new topic so further research could focus on the barriers, and risks associated with implementing MaaS within urban areas. Analysis throughout a range of case study areas using transportation modeling, consumer surveys, expert opinion, and trials could also identify issues specific to the varying characteristics of different regions, including those associated with regulatory systems, policy frameworks, cultural differences, and geographic conditions.

Secondly, research could also focus on other innovative ways to integrate transportation modes, attract users to shared mobility, or develop alternatives systems. Research could explore the role of other technological advances outside the field of transportation including 5G, AI, digital twins, virtual reality, blockchain, IoT, big data, and cloud computing. For example, the use of virtual reality and augmented reality could be used to educate, market, and promote new transportation innovations towards individuals and business. Similarly, it could be used to let users experience new transportation technology prior to analyzing their attitudes.

Finally, given the recent events associated with the COVID-19 pandemic and its potential implication on consumer attitudes towards shared mobility, there is also a need to analyze whether the experience has changed user perspectives and willingness-to-ride shared, and public transport. This is important as attitudes may be changing due to increased awareness of vulnerabilities associated with virus transmission from passengers sharing close quarters in vehicles that often rely on centralized air-conditioning and little ventilation [138]. Furthermore, given these unprecedented events and the pressure on individuals and business to quickly adopt remote working and social environments transportation researchers may be more inclined to ask whether no mobility is smarter than smart mobility. From a transport disadvantage perspective research could be undertaken to compare individual transportation needs before, during, and after the lockdown experiences. Representatives from the commercial sector could be interviewed to discuss experiences with remote working, and how the experience will shape business models into the future, as one of the advantages of remote working is that for many jobs individuals may no longer be limited to employment opportunities due to location or issues with being able to afford or access transportation that is responsive to their needs.

Author Contributions: L.B., data collection, processing, investigation, analysis, writing—original draft preparation, and writing—review and editing; and T.Y. and A.P., supervision, conceptualization, writing—review and editing. All authors have read and agreed to the final version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. The authors thank the editor and three anonymous referees for their invaluable comments on an earlier version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

# Appendix A

| Author                                                   | Year | Title                                                                                                                            | Journal                                                   | Country   | Category                         | Findings                                                                                                                                                                                                                                                                              | Relevance                                                                                                                                                             |
|----------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mageean, J., and<br>Nelson, J. D.                        | 2003 | The evaluation of demand<br>responsive transport<br>services in Europe.<br>Demand responsive                                     | Journal of Transport<br>Geography                         | UK        | Temporal and<br>Spatial          | Finding presents results from an evaluation of DRT in sites across Europe                                                                                                                                                                                                             | Identifies transportation<br>telematics as a way to improve<br>the efficiency DRT systems.<br>Describes how DRT services can                                          |
| Brake, J., Nelson, J. D.,<br>and Wright, S.              | 2004 | transport: towards the<br>emergence of a new<br>market segment.                                                                  | Journal of Transport<br>Geography                         | UK        | Temporal and<br>Spatial          | Findings highlight issues relating to the development of DRT.                                                                                                                                                                                                                         | be enhanced by ITS to better deal<br>with high demand,<br>route planning, and integration.                                                                            |
| Brake, J., and Nelson,<br>J. D.                          | 2007 | A case study of flexible<br>solutions to transport<br>demand in a deregulated<br>environment.                                    | Journal of Transport<br>Geography                         | UK        | Temporal and<br>Spatial          | Findings demonstrate the evolution<br>of public transport in the case study<br>area and highlights the potential for<br>better integration if deregulated                                                                                                                             | Provides insights into the use of<br>the DRT to fill gaps in public<br>transport networks particularly<br>in dispersed areas.<br>Describes how FTS have the           |
| Ferreira, L., Charles, P.,<br>and Tether, C.             | 2007 | Evaluating Flexible<br>Transport Solutions.                                                                                      | Transportation<br>Planning and<br>Technology              | Australia | Temporal and<br>Spatial          | Findings report on a recent study of the use of FTS in Brisbane, QLD.                                                                                                                                                                                                                 | potential to increase public<br>transport use by providing a<br>more customer centric and<br>adaptive solution to the first-<br>last-mile problem.                    |
| Hensher, D. A.                                           | 2007 | Some Insights into the<br>Key Influences on<br>Trip-Chaining Activity<br>and Public Transport Use<br>of Seniors and the Elderly. | International Journal<br>of Sustainable<br>Transportation | Australia | Psychological<br>and Information | Findings show that "the loss of a<br>driver's license and a partner have<br>the potential to be major<br>contributors to social isolation in<br>the absence of inadequate flexible<br>public transport and or support<br>mechanisms that enable access to<br>the car as a passenger." | Identifies the potential for ATIS<br>and ITS signs to provide dynamic<br>information targeted directly to<br>elderly drivers, such as avoiding<br>challenging routes. |
| Zografos, K.,<br>Androutsopoulos, K.,<br>and Sihvola, T. | 2008 | A methodological<br>approach for developing<br>and assessing business<br>models for flexible<br>transport systems.               | Transportation                                            | Greece    | Physical and<br>Economic         | Develops a methodology for the<br>development of flexible<br>transport systems.                                                                                                                                                                                                       | Describes how FTS allow<br>flexibility in assigning routes,<br>schedule, vehicles, and ticketing<br>systems making them more<br>responsive to local needs.            |
| Battellino, H.                                           | 2009 | Transport for the transport disadvantaged.                                                                                       | Transport Policy                                          | Australia | Temporal and<br>Spatial          | Findings brings attention to the<br>potential for scheduled transport<br>services to fulfil transport needs in<br>rural communities                                                                                                                                                   | Describes how DRT could be<br>used to enhance the availability<br>and scope of community<br>transport to better service<br>residents who need it most.                |

# Table A1. Reviewed literature pieces.

| Author                                                                             | Year | Title                                                                                                  | Journal                                    | Country                | Category                         | Findings                                                                                                                                                                                                              | Relevance                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mulley, C., and<br>Nelson, J. D.                                                   | 2009 | Flexible transport services.                                                                           | Research in<br>Transportation<br>Economics | Australia              | Temporal and<br>Spatial          | Findings that if implemented<br>correctly flexible transport systems<br>have the potential to improve<br>bus services                                                                                                 | Describes how the use of ITS to<br>better match supply and demand<br>can improve the efficiency of DRT<br>and lead to lower costs more<br>reflective of PT.                                            |
| Nelson, J. D.,<br>Wright, S., Masson, B.,<br>Ambrosino, G., and<br>Naniopoulos, A. | 2010 | Recent developments in<br>Flexible Transport<br>Services.                                              | Research in<br>Transportation<br>Economics | UK                     | Physical and<br>Economic         | Proposes the introduction of an<br>organizational structure (FAMS) to<br>help with the introduction of<br>flexible transport services                                                                                 | Discusses the use of FTS to<br>compliment conventional public<br>transport by responding directly<br>to user-demand.                                                                                   |
| Santos, G.,<br>Behrendt, H., and<br>Teytelboym, A.                                 | 2010 | Part II: Policy instruments<br>for sustainable road<br>transport.                                      | Research in<br>Transportation<br>Economics | UK                     | Temporal and<br>Spatial          | An analysis of policies related to<br>sustainable road transport which<br>fall into three categories: physical,<br>soft, and knowledge policies.                                                                      | Discusses how subsidized<br>demand responsive taxis could<br>replace conventional public<br>transport in rural and<br>low-density areas.                                                               |
| O'Shaughnessy, M.,<br>Casey, E., and<br>Enright, P.                                | 2011 | Rural transport in peripheral rural areas.                                                             | Social Enterprise<br>Journal               | Republic of<br>Ireland | Physical and<br>Economic         | Findings show that users of DRT<br>are typically long-term residents,<br>female, elderly, and those who live<br>alone in isolated areas.                                                                              | Describes how DRT services have<br>helped increase independence,<br>reduced feelings of social<br>isolation and improve access to<br>services for residents in rural<br>areas without access to a PMV. |
| Broome, K.,<br>Worrall, L., Fleming, J.,<br>and Boldy, D.                          | 2012 | Evaluation of flexible<br>route bus transport for<br>older people.                                     | Transport Policy                           | Australia              | Physical and<br>Economic         | Findings show that when replacing<br>fixed route with flexible service in<br>Australia the use by older people<br>almost doubled.                                                                                     | Provides insights into how DRT<br>has improved accessibility and<br>social inclusion for elderly.                                                                                                      |
| Lucas, K., and<br>Currie, G.                                                       | 2012 | Developing socially inclusive transportation policy.                                                   | Transportation                             | UK                     | Temporal and<br>Spatial          | Findings identify that there are<br>important differences between<br>transport disadvantage in low<br>income populations in UK<br>and Australia.                                                                      | Identifies that more flexible<br>routes and timetabling is required<br>to meet the needs of TDA.                                                                                                       |
| Nelson, J. D., and<br>Phonphitakchai, T.                                           | 2012 | An evaluation of the user<br>characteristics of an open<br>access DRT service.                         | Research in<br>Transportation<br>Economics | UK                     | Psychological and Information    | Results reveal that DRT system can<br>improve accessibility, particularly<br>for older residents.                                                                                                                     | Describes how users are more<br>satisfied with DRT over<br>conventional PT, particularly<br>regarding safety of door-to-door<br>services at night.                                                     |
| Shergold, I., and<br>Parkhurst, G.                                                 | 2012 | Transport-related social<br>exclusion amongst older<br>people in rural Southwest<br>England and Wales. | Journal of Rural<br>Studies                | UK                     | Psychological<br>and Information | Findings reveal that the availability<br>of private vehicles "is not a strong<br>indicator of overall location,<br>although non-availability was<br>important in limiting access to<br>particular times of location." | Describes issues relating to DRT<br>systems reliability and its<br>perception as being for<br>old people.                                                                                              |

although non-availability was important in limiting access to particular types of location."

| Author                                                                           | Year | Title                                                                                                                | Journal                                      | Country  | Category                         | Findings                                                                                                                                                                                                                                | Relevance                                                                                                                                                                      |
|----------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Velaga, N. R., Beecroft,<br>M., Nelson, J. D.,<br>Corsar, D., and<br>Edwards, P. | 2012 | Transport poverty meets<br>the digital divide:<br>accessibility and<br>connectivity in rural<br>communities.         | Journal of Transport<br>Geography            | UK       | Psychological<br>and Information | Concludes that the provision of<br>adequate transportation services to<br>rural communities presents<br>significant challenges because of<br>issues relating to transport poverty<br>and the digital divide.                            | Describes the use of GPS, ICT and other technology to enhance DRT.                                                                                                             |
| Wells, P                                                                         | 2012 | Converging transport<br>policy, industrial policy<br>and environmental policy.                                       | Local Economy                                | UK       | Temporal and<br>Spatial          | The "article identifies inter- and<br>intra-regional dimensions of<br>inequality that are emerging<br>around the convergence of<br>transport policy, industrial policy<br>and environmental policy."                                    | Provides insights into social<br>equity issues surrounding future<br>EM introduction.                                                                                          |
| Newman, D.                                                                       | 2013 | Cars and consumption                                                                                                 | Capital and Class                            | UK       | Physical and<br>Economic         | Concludes that electric vehicle will<br>never be the ideal solution to<br>promoting sustainable transport<br>systems if they are used to promote<br>increased consumption.                                                              | Discusses how electric vehicles<br>are significantly more expensive<br>than traditional vehicles.                                                                              |
| Ward, M. R. M.,<br>Somerville, P., and<br>Bosworth, G.                           | 2013 | Now without my car I<br>don't know what I'd do'                                                                      | Local Economy                                | UK       | Psychological<br>and Information | Findings show that, "while<br>community transport services play<br>a vital role in rural communities,<br>many older people are confused or<br>unclear about what these services<br>do, how they can be used, and how<br>to access them" | Describes how older people often<br>confused and unclear about how<br>DRT could serve them and that<br>more information could help.                                            |
| Akgöl, K., and Günay,<br>B.                                                      | 2014 | Prediction of Modal Shift<br>Using Artificial Neural<br>Networks.                                                    | TEM Journal                                  | Turkey   | Temporal and<br>Spatial          | Findings reveal the potential of<br>applying machine learning to<br>calculate modal shift.                                                                                                                                              | Provides insights into modal shift<br>away from PMV when AI is used<br>to optimize route planning.                                                                             |
| Harrison, G., and<br>Shepherd, S                                                 | 2014 | An interdisciplinary study<br>to explore impacts from<br>policies for the<br>introduction of low<br>carbon vehicles. | Transportation<br>Planning and<br>Technology | UK       | Physical and<br>Economic         | Establishes an ethical framework to<br>"balance obligations to reduced<br>greenhouse gases (GHG) emissions<br>and rights to car ownership"                                                                                              | Provides insights into the importance of having access to a PMV.                                                                                                               |
| Martinez, L. M.,<br>Viegas, J. M., and<br>Eiro, T.                               | 2014 | Formulating a New<br>Express Minibus Service<br>Design Problem as a<br>Clustering Problem.                           | Transportation Science                       | Portugal | Temporal and<br>Spatial          | "Presents a novel and simple<br>modelling approach to design<br>innovative transportation services,<br>such as the express<br>minibus service."                                                                                         | Describes how future DRT<br>models can be developed with<br>real-time booking systems allow<br>real-time routing changes to<br>ensure the most direct routes<br>for customers. |

Table A1. Cont.

| Author                                                            | Year | Title                                                                                                                                        | Journal                                      | Country   | Category                         | Findings                                                                                                                                                                                                                                                                                                                                         | Relevance                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stanley, J., and<br>Lucas, K.                                     | 2014 | Workshop 6 Report:<br>Delivering sustainable<br>public transport.                                                                            | Research in<br>Transportation<br>Economics   | Australia | Physical and<br>Economic         | Develops "a set of general<br>principles intended to further<br>promote sustainable<br>public transport."                                                                                                                                                                                                                                        | Provides insights into how<br>technology can improve<br>DRT systems.                                                                                                                                                                               |
| Wang, C., Quddus, M.,<br>Enoch, M., Ryley, T.,<br>and Davison, L. | 2014 | Multilevel modelling of<br>Demand Responsive<br>Transport (DRT) trips in<br>Greater Manchester based<br>on area-wide<br>socio-economic data. | Transportation                               | UK        | Psychological<br>and Information | Findings show that "the demand<br>for DRT services was higher in<br>areas with low car ownership, low<br>population density, high proportion<br>of white people, and high levels of<br>social deprivation, measured in<br>terms of income, employment,<br>education, housing and services,<br>health and disability, and living<br>environment." | Describes how DRT appeals to<br>areas of low population density,<br>low car ownership and high<br>levels of social deprivation.<br>Explains that the perception of<br>DRT is that it is safer than other<br>forms of road transport.               |
| Beecroft, M., and<br>Pangbourne, K.                               | 2015 | Future prospects for<br>personal security in travel<br>by public transport.                                                                  | Transportation<br>Planning and<br>Technology | UK        | Psychological<br>and Information | Develops "a set of policy<br>recommendations, operator, and<br>business opportunities, knowledge<br>gaps and research priorities to<br>support and enhance provision for<br>personal security in travel by<br>public transport."                                                                                                                 | Provides insights into the use of<br>technology to improve safety and<br>security on shared<br>mobility services.                                                                                                                                  |
| Bigerna and Polinori                                              | 2015 | Willingness to Pay and<br>Public Acceptance for<br>Hydrogen Buses.                                                                           | Sustainability                               | Italy     | Physical and<br>Economic         | "The results confirm that residents<br>in Perugia are willing to pay extra<br>to support the introduction<br>of H2B."                                                                                                                                                                                                                            | Provides evidence that users are<br>willing to pay more for<br>sustainable public transport<br>(Hydrogen Buses)                                                                                                                                    |
| Evans, G., Guo, A. W.,<br>Blythe, P., and<br>Burden, M.           | 2015 | Integrated smartcard solutions.                                                                                                              | Transportation<br>Planning and<br>Technology | UK        | Physical and<br>Economic         | "Findings suggest there is potential<br>for an integrated TranCit card,<br>facilitating easier access to services<br>and travel options across<br>boundaries, even at the<br>international level."                                                                                                                                               | Describes how data obtained<br>from smart card ticketing systems<br>can be used to better understand<br>the behavior of passenger and<br>improve services.                                                                                         |
| Gomes, R., Pinho de<br>Sousa, J., and Galvão<br>Dias <i>,</i> T.  | 2015 | Sustainable Demand<br>Responsive<br>Transportation systems in<br>a context of austerity.                                                     | Research in<br>Transportation<br>Economics   | Portugal  | Temporal and<br>Spatial          | Finding show that "service design<br>is critical" to ensure DRT services<br>"answer sustainability and social<br>inclusion challenges" while<br>keeping costs low.                                                                                                                                                                               | Discusses how DRT services can<br>reduce costs and improve<br>efficiency of transport network by<br>using fewer, smaller vehicles,<br>incorporating dynamic route<br>planning and passenger<br>allocation, and reducing instances<br>of dead-runs. |

| Author                                                                                         | Year | Title                                                                                                  | Journal                                 | Country        | Category                 | Findings                                                                                                                                                                                                                                                                                         | Relevance                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grieco, M.                                                                                     | 2015 | Social sustainability and<br>urban mobility.                                                           | Social Responsibility<br>Journal        | UK             | Temporal and<br>Spatial  | Findings show that "databases and<br>methodologies around social<br>sustainability have not been<br>sufficiently developed to permit<br>ready operationalisation" of<br>advances in urban mobility.                                                                                              | Describes how intelligent data<br>collection can help local<br>authorities identify where<br>transport services are required in<br>order to reduce social inequalities<br>resulting from physical or<br>geographic conditions. |
| Haustein, S., and<br>Siren, A.                                                                 | 2015 | Older People's Mobility.                                                                               | Transport Reviews                       | Denmark        | Physical and<br>Economic | Propose a hypothetical model<br>based on the findings from a<br>systematic comparison study. The<br>modal "integrates the most relevant<br>determinants of older people's<br>mobility patterns and their<br>interrelations.                                                                      | Discusses how e-mobility, in-car<br>assistance technology, and AVs<br>will offer good opportunities for<br>the elderly to remain mobile<br>for longer.                                                                         |
| Kammerlander, M.,<br>Schanes, K.,<br>Hartwig, F., Jäger, J.,<br>Omann, I., and<br>O'Keeffe, M. | 2015 | A resource-efficient and<br>sufficient future mobility<br>system for improved<br>well-being in Europe. | Journal of Futures<br>Research          | Austria        | Temporal and<br>Spatial  | Findings show that to achieve the<br>vision of resource efficiency in the<br>transport section a new way of<br>thinking about mobility is required.<br>"It is not about travelling fastest<br>and frequently, but unhurried,<br>infrequently, and sustainably."<br>Findings show that the travel | Describes how DRT, and<br>door-to-door transport, can<br>reduce demand for PMV travel<br>by providing a viable option in<br>low populated regions.                                                                             |
| Mackett, R.                                                                                    | 2015 | Improving accessibility<br>for older<br>people—Investing in a<br>valuable asset.                       | Journal of Transport<br>and Health      | UK             | Physical and<br>Economic | patterns of older people are<br>consistent with the assumption that<br>they contribute to society<br>economically, by frequenting local<br>shops and through volunteer work<br>and childcare. The barriers older<br>people face with regards to<br>transportation may hinder an even             | Describes how the potential<br>ability for AVs to drive without<br>human input means degenerative<br>disabilities will no longer inhibit<br>elderly and disabled individuals.                                                  |
| Thomopoulos, N., and<br>Givoni, M.                                                             | 2015 | The autonomous car—a<br>blessing or a curse for the<br>future of low carbon<br>mobility?               | European Journal of<br>Futures Research | UK             | Physical and<br>Economic | greater contribution.<br>Concludes that the introduction of<br>AV is only likely to create a more<br>desirable transport system if it is<br>accompanied by social change.<br>Findings from a survey, focus                                                                                       | Provides insights into how AV<br>could eliminate transport related<br>exclusion.                                                                                                                                               |
| Cheyne, C., and<br>Imran, M.                                                                   | 2016 | Shared transport.                                                                                      | Energy Research and<br>Social Science   | New<br>Zealand | Physical and<br>Economic | group, and analysis of census data<br>in New Zealand highlight "a<br>growing need for alternatives to<br>private transport for residents of<br>small towns."                                                                                                                                     | Provides insights into the<br>important of shared mobility<br>being flexible in order to<br>accommodate individual needs.                                                                                                      |

| Author                                                                                | Year | Title                                                                                                                  | Journal                           | Country   | Category                         | Findings                                                                                                                                                                                                                                                                            | Relevance                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clark, J., and Curl, A.                                                               | 2016 | Bicycle and Car Share<br>Schemes as Inclusive<br>Modes of Travel?                                                      | Social Inclusion                  | UK        | Physical and<br>Economic         | "Argues that there is a need to<br>consider the social inclusivity of<br>sharing schemes and to develop<br>appropriate evaluation frameworks<br>accordingly."                                                                                                                       | Describes how shared bicycle and<br>car schemes can remove<br>economic barriers associated with<br>owning your own car and how<br>those with disabilities are<br>unlikely to benefit from car and<br>bike schemes alone. |
| Davidsson, P.,<br>Hajinasab, B.,<br>Holmgren, J.,<br>Jevinger, Å., and<br>Persson, J. | 2016 | The Fourth Wave of<br>Digitalization and Public<br>Transport.                                                          | Sustainability                    | Sweden    | Psychological<br>and Information | Concludes that for transport<br>operators, planners, and users to<br>take advantage of the opportunities<br>related to IoT and its impact on<br>public transport a number of<br>technical and non-technical<br>challenges need to be addressed.<br>Findings argue "that the         | Discusses how smart mobility<br>enabled by IoT could improve<br>data collection and contribute to<br>providing accurate, real-time<br>information about vehicles, users,<br>traffic, and air quality.                    |
| Leibert, T., and<br>Golinski, S.                                                      | 2016 | Peripheralisation.                                                                                                     | Comparative<br>Population Studies | Germany   | Temporal and<br>Spatial          | peripheralisation approach is a<br>helpful tool to better understand<br>how interaction of out-migration,<br>dependence, disconnection, and<br>stigmatisation shape the future of<br>rural regions."                                                                                | Describes there is a need for local<br>specific strategies to address how<br>DRT can be used more efficiently<br>and equitably.                                                                                          |
| Petersen, T.                                                                          | 2016 | Watching the Swiss.                                                                                                    | Transport Policy                  | Australia | Temporal and<br>Spatial          | Analyses the characteristics of<br>public timetable networks in the<br>contest of rural transportation in<br>Switzerland. Findings identify<br>lessons for their potential<br>application in other locations.                                                                       | Discusses how first-mile,<br>last-mile transport networks may<br>provide better coverage and be<br>more efficient they are timed to<br>connect to public transport hubs<br>to ensure reductions in<br>transfer times.    |
| Chen, Y.,<br>Ardila-Gomez, A.,<br>and Frame, G.                                       | 2017 | Achieving energy savings<br>by intelligent<br>transportation systems<br>investments in the context<br>of smart cities. | Transportation<br>Research Part D | USA       | Psychological<br>and Information | Findings from literature review,<br>case studies and interviews has<br>"found that the smart cities context<br>has transformed traditional ITS into<br>smart mobility with three major<br>characteristics: people-centre,<br>data-driven, and powered by<br>bottom-up innovations." | Describes how technological<br>improvements in ITS and ICT can<br>facilitate the collection and<br>analysis of data which can be<br>used to improve the efficiency of<br>the transportation system.                      |
| McLeod, S.,<br>Scheurer, J., and<br>Curtis, C.                                        | 2017 | Urban Public Transport.                                                                                                | Journal of Planning<br>Literature | Australia | Temporal and<br>Spatial          | The "findings of this systematic<br>review support the paradigm of PT<br>oriented urban mobility and<br>provide an optimistic insight into<br>the future of sustainable travel<br>in cities."                                                                                       | Discusses how DRT enabled by<br>autonomous technology and<br>shared mobility has the potential<br>to increase the catchment of<br>traditional public<br>transport systems.                                               |

| Author                                                            | Year | Title                                                               | Journal                                             | Country            | Category                         | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relevance                                                                                                                                                                                             |
|-------------------------------------------------------------------|------|---------------------------------------------------------------------|-----------------------------------------------------|--------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Melo, S., Macedo, J.,<br>and Baptista, P.                         | 2017 | Guiding cities to pursue a smart mobility paradigm.                 | Research in<br>Transportation<br>Economics          | Portugal           | Psychological<br>and Information | Results show that traffic<br>management systems that re-route<br>can reduce travel times and<br>enhance the efficiency of roads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Describes how traffic<br>management systems enabled by<br>advances in ICT and data<br>collection provide guidance<br>information to drivers to assist<br>route planning.                              |
| Milakis, D., van<br>Arem, B., and van<br>Wee, B.                  | 2017 | Policy and society related<br>implications of automated<br>driving. | Journal of Intelligent<br>Transportation<br>Systems | The<br>Netherlands | Physical and<br>Economic         | Findings show that "first-order<br>impacts (of autonomous vehicles)<br>on road capacity, fuel efficiency,<br>emissions, and accidents risk are<br>expected to be beneficial. The<br>magnitude of these benefits will<br>likely increase with the level of<br>automation and cooperation and<br>with the penetration rate of<br>these systems."                                                                                                                                                                                                                                                                                                                   | Describes how AV provide<br>another transportation option fo<br>those unable to drive a PMV.                                                                                                          |
| Newman, D.                                                        | 2017 | Automobiles and<br>socioeconomic<br>sustainability                  | Transfers                                           | UK                 | Physical and<br>Economic         | Proposes a mobility bill of rights<br>that states: (1) everybody should<br>have access to affordable mobility<br>which meets basic needs; (2)<br>transport should not harm us or the<br>environment; (3) transport should<br>not threaten health, safety or the<br>environment; (4) transport pricing<br>should not penalize those who use<br>it less; (5) transport should be<br>accessibly so we are not excluded<br>from society; (6) we should not<br>have to rely on private vehicles for<br>our travel; (7) everyone should<br>have access to a public transport<br>system; and (8) transport should<br>not contribute to depletion of<br>natural resource | Discusses how electric vehicles<br>offer very little to overcome<br>transport related social exclusior                                                                                                |
| Sun, Y., Olaru, D.,<br>Smith, B., Greaves, S.,<br>and Collins, A. | 2017 | Road to autonomous vehicles in Australia.                           | Road and Transport<br>Research                      | Australia          | Physical and<br>Economic         | Findings identify a number of key<br>issues associated with the<br>introduction of AV in Australia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Discusses how increased VOT in<br>AV could have a positive impact<br>on those impacted by<br>geographic-related TDA and<br>there is potential for SAV to<br>significantly reduce the costs<br>of DRT. |

Table A1. Cont.

| Author                                                                                | Year | Title                                                                                                                                   | Journal                            | Country  | Category                         | Findings                                                                                                                                                                                                                                                     | Relevance                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adnan, N., Md<br>Nordin, S.,<br>Bin Bahruddin, M. A.,<br>and Ali, M.                  | 2018 | How trust can drive<br>forward the user<br>acceptance to the<br>technology?                                                             | Transportation<br>Research Part A  | Malaysia | Physical and<br>Economic         | Findings show "that the level of<br>trust, which may vary on the<br>sociodemographic profile of the<br>users, has been studied as one of<br>the factors for user acceptance."                                                                                | Describes AV could improve<br>accessibility for elderly and<br>disabled including the potential<br>for increased social interactions,<br>greater connection to<br>employment and health services<br>improved comfort, and<br>increased VOT. |
| Docherty, I.,<br>Marsden, G.,<br>and Anable, J.                                       | 2018 | The governance of smart mobility.                                                                                                       | Transportation<br>Research Part A  | UK       | Physical and<br>Economic         | Identifies public value as the key<br>governance aim that should be<br>implemented for the transition to<br>smart mobility.                                                                                                                                  | Describes how MaaS can facilitate<br>the integration of a wide range of<br>mobility providers and help<br>strengthen the efficiency of public<br>transport and DRT.                                                                         |
| Gonzalez-Feliu, J.,<br>Pronello, C., and<br>Salanova Grau, J.                         | 2018 | Multi-stakeholder<br>collaboration in urban<br>transport.                                                                               | Transport                          | France   | Physical and<br>Economic         | Provides an analysis and overview<br>of a set of papers which focus on<br>"the field of multi-stakeholder and<br>collaboration in urban transport"                                                                                                           | Discusses how an integrated<br>system such as MaaS can<br>facilitate multi-stakeholder<br>collaboration, and the sharing of<br>information and resources.                                                                                   |
| Graham, H., de Bell, S.,<br>Flemming, K.,<br>Sowden, A., White, P.,<br>and Wright, K. | 2018 | The experiences of<br>everyday travel for older<br>people in rural areas.                                                               | Journal of Transport<br>and Health | UK       | Psychological<br>and Information | Identifies three themes related to<br>older people and their experiences<br>of everyday travel: (a) experience<br>with inadequate transport system;<br>(b) importance of everyday travel<br>to maintain lives; and (c) the<br>symbolic importance of travel. | Describes how DRT and<br>community transport is often<br>stigmatized within the<br>community and there is<br>confusion about how to, and who<br>can access it.                                                                              |
| Guo et al.                                                                            | 2018 | Impacts of internal<br>migration, household<br>registration system, and<br>family planning policy on<br>travel mode choice in<br>China. | Travel, Behavior and<br>Society    | USA      | Institutional                    | Findings "suggest that—among<br>other factors—continuing internal<br>migration, relaxation of household<br>registration system, and changes in<br>family planning policy, are likely to<br>affect travel mode choices."                                      | Provides insights into the impact<br>of policy and laws on travel<br>mode choice.                                                                                                                                                           |
| Hopkins and<br>Schwanen                                                               | 2018 | Automated Mobility<br>Transitions.                                                                                                      | Sustainability                     | UK       | Institutional                    | Results "suggest that the UK has<br>adopted a reasonably<br>comprehensive approach to the<br>governing of automated vehicle<br>innovation but that this approach<br>cannot be characterized as<br>sufficiently inclusive, democratic,<br>diverse and open."  | Discusses importance of<br>including general public in<br>decision making                                                                                                                                                                   |

Table A1. Cont.

| Table A1. | Cont. |
|-----------|-------|
|-----------|-------|

| Author                                          | Year | Title                                                                      | Journal                           | Country            | Category                         | Findings                                                                                                                                                                                                                                                                                  | Relevance                                                                                                                                                                                                                         |
|-------------------------------------------------|------|----------------------------------------------------------------------------|-----------------------------------|--------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Howard, A., and<br>Borenstein, J.               | 2018 | The ugly truth about<br>ourselves and our robot<br>creations.              | Science and<br>Engineering Ethics | USA                | Psychological<br>and Information | Concludes that a range of measures<br>should be taken to ensure bias is<br>removed or mitigated from robotic<br>technology - including<br>self-driving vehicles.                                                                                                                          | Discusses how AVs will have to<br>make decisions based on a range<br>of alternative options and are<br>therefore at risk of bias.                                                                                                 |
| Illgen, S.,<br>and Höck, M.                     | 2018 | Establishing car sharing services in rural areas.                          | Transportation                    | Germany            | Temporal and<br>Spatial          | "Findings indicate a certain<br>feasibility of rural car sharing<br>development, while highlighting<br>the positive effect it could have on<br>car sharing demand in<br>urban areas."                                                                                                     | Provides insights into how ride<br>sharing can contribute to<br>further TDA.                                                                                                                                                      |
| Jin, S. T., Kong, H.,<br>Wu, R., and Sui, D. Z. | 2018 | Ridesourcing, the sharing<br>economy, and the future<br>of cities.         | Cities                            | USA                | Psychological<br>and Information | Findings describe how it is unlikely<br>that ride sharing will reduce<br>car ownership.                                                                                                                                                                                                   | Describes how shared mobility<br>and AVs can help smaller<br>communities that do not have<br>access to public transport by<br>providing more options,<br>more frequently.                                                         |
| Lam, D.,<br>and Givens, J.W.                    | 2018 | Small and smart.                                                           | New Global Studies                | USA                | Temporal and<br>Spatial          | Using South Bend, Indiana as an<br>example the study looks at the<br>potential for smart cities in smaller<br>communities.                                                                                                                                                                | Discusses the use of free-floating<br>bike sharing for first- and<br>last-mile connection to PT.                                                                                                                                  |
| Li, X., Zhang, Y.,<br>Sun, L., and Liu, Q.      | 2018 | Free-floating bike sharing<br>in Jiangsu.                                  | Energies                          | Singapore          | Temporal and<br>Spatial          | Findings show that: (a) bike<br>sharing was mainly used for<br>travelling short distances; (b) lower<br>costs, more education, and<br>promotion of health benefits could<br>be used to promote bike sharing;<br>and (c) bike sharing is more<br>attractive to higher<br>income residents. | Describes how important the<br>perception of safety is to ensure<br>successful operation and use<br>of AV.                                                                                                                        |
| Lim, H. S. M.,<br>and Taeihagh, A.              | 2018 | Autonomous vehicles for<br>smart and sustainable<br>cities.                | Energies                          | Singapore          | Psychological and Information    | Findings describe how addressing<br>privacy and cybersecurity related<br>to AV is crucial to the development<br>of smart and sustainable cities.                                                                                                                                          | Describes how AV may lead to<br>increased suburbanization<br>or density.                                                                                                                                                          |
| Milakis, D.,<br>Kroesen, M.,<br>and van Wee, B. | 2018 | Implications of automated vehicles for accessibility and location choices. | Journal of Transport<br>Geography | The<br>Netherlands | Physical and<br>Economic         | Findings from Q-method study<br>showed that experts expect AV to<br>influence accessibility through all<br>four level (land use, transport,<br>temporal and individual)                                                                                                                   | Discusses advantage of a MaaS<br>system would be that unlike<br>existing DRT services the<br>subsidized provision of transpor<br>may not be seen as an entitlemen<br>but instead be part of a larger<br>system that benefits all. |

| Author                                                                                          | Year | Title                                                                            | Journal                                    | Country   | Category                         | Findings                                                                                                                                                                                                                                                                                | Relevance                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------|--------------------------------------------|-----------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mulley, C., and<br>Kronsell, A.                                                                 | 2018 | The "uberisation" of<br>public transport and<br>mobility as a service<br>(MaaS). | Research in<br>Transportation<br>Economics | Australia | Psychological<br>and Information | Findings of workshop discussion<br>show a difference between policy<br>and mobility provider views, a<br>need for flexibility, the importance<br>of collaboration, and a need to<br>address user safety.                                                                                | Discusses how MaaS provides an<br>opportunity to cross subsidize<br>which could improve the<br>transportation for disadvantaged<br>groups (e.g., aged, disabled, and<br>rural areas).                                                                                           |
| Mulley, C.,<br>Nelson, J. D.,<br>and Wright, S.                                                 | 2018 | Community transport<br>meets mobility as a<br>service.                           | Research in<br>Transportation<br>Economics | Australia | Temporal and<br>Spatial          | Findings show that CT operators in<br>Australia are very enthusiastic<br>about the potential for MaaS to<br>offer mobility packages to services<br>their users.                                                                                                                         | Discusses how AVs with the<br>absence of strict policy measures<br>could result in more demand for<br>car ownership and<br>miles travelled.                                                                                                                                     |
| Noy, K., and<br>Givoni, M.                                                                      | 2018 | Is "Smart Mobility"<br>Sustainable?                                              | Sustainability                             | Israel    | Physical and<br>Economic         | Findings from a survey of 117<br>entrepreneurs "shows that there is<br>a mismatch between interpretation<br>and understanding of what is<br>'smart' and what is 'sustainable'."                                                                                                         | Discusses that for shared mobility<br>to help achieve sustainable<br>mobility objectives it is important<br>to identify how existing public<br>transport and shared mobility can<br>be synergized to make them<br>complementary and benefit the<br>transport system as a whole. |
| Soares Machado, C.,<br>de Salles Hue, N. P. M.,<br>Berssaneti, F. T., and<br>Quintanilha, J. A. | 2018 | An Overview of Shared<br>Mobility.                                               | Sustainability                             | Brazil    | Psychological and Information    | Findings determine that based on<br>literature review the introduction<br>of shared modes alone "will not<br>solve transportation problems in<br>large cities."                                                                                                                         | Discusses how people with visual<br>impairment would greatly benefit<br>if existing door-to-door<br>transportation services<br>were improved.                                                                                                                                   |
| Wong, S.                                                                                        | 2018 | Traveling with blindness.                                                        | Health and Place                           | USA       | Physical and<br>Economic         | Findings show "space-time<br>constraints of people with visual<br>impairments are closed linked to<br>their access to transportation,<br>assistive technologies, and<br>mobile devices."                                                                                                | Describes how providing<br>transportation for low density<br>dispersed neighborhoods is<br>challenging due to dispersal of<br>individuals and destinations.                                                                                                                     |
| Allen, J., and Farber, S.                                                                       | 2019 | Sizing up transport<br>poverty.                                                  | Transport Policy                           | Canada    | Temporal and<br>Spatial          | Recommends that future<br>investments in major<br>transportation infrastructure<br>should be focused in areas with<br>high density of low-income<br>households and low levels of<br>accessibility. In areas of low density,<br>subsidized ride sharing and DRT<br>should be considered. | Describes how SAV could reduce<br>total cost of ownership by over<br>80% per km travelled compared<br>to a conventional car.                                                                                                                                                    |

Table A1. Cont.

| Author                                                                                            | Year | Title                                                                                            | Journal                                           | Country | Category                         | Findings                                                                                                                                                                                                                                                                                                                         | Relevance                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axsen, J., and<br>Sovacool, B. K.                                                                 | 2019 | The roles of users in<br>electric, shared and<br>automated mobility<br>transitions.              | Transportation<br>Research Part D                 | Canada  | Physical and<br>Economic         | Findings summarize<br>"characteristics of early users, as<br>well as practical insights for<br>strategies and policies seeking<br>societally-beneficial outcomes from<br>mass deployment of"<br>transport innovations.                                                                                                           | Describes how FTS can contribute<br>to rural connectivity by providing<br>door-to-door transport that does<br>not rely on fixed routes and how<br>MaaS is promising because it<br>provides integrated customer<br>experiencing linking users with a<br>range of transport options<br>on demand. |
| Beecroft, M.,<br>Cottrill, C. D.,<br>Farrington, J. H.,<br>Nelson, J. D., and<br>Niewiadomski, P. | 2019 | From infrastructure to digital networks.                                                         | Scottish Geographical<br>Journal                  | UK      | Psychological and Information    | Identifies connectivity as a central<br>theme when looking at the<br>development and evolution of<br>transport geography research at the<br>University of Aberdeen.                                                                                                                                                              | Provides insights into attitudes<br>towards AV among those with<br>intellectual disability.                                                                                                                                                                                                     |
| Bennett, R.,<br>Vijaygopal, R.,<br>and Kottasz, R.                                                | 2019 | Willingness of people<br>with mental health<br>disabilities to travel in<br>driverless vehicles. | Journal of Transport<br>and Health                | UK      | Psychological<br>and Information | Findings show "three categories of<br>attitude towards AVs arose from<br>the STM; respectively involving<br>freedom, fear and curiosity."                                                                                                                                                                                        | Discusses how public transport<br>providers should look to<br>integrated systems such as MaaS<br>which can help with sharing of<br>data, identification of demand,<br>and connect potential users with<br>the most suitable providers.                                                          |
| Bennett, R.,<br>Vijaygopal, R.,<br>and Kottasz, R.                                                | 2019 | Attitudes towards<br>autonomous vehicles<br>among people with<br>physical disabilities.          | Transportation<br>Research Part A                 | UK      | Psychological<br>and Information | Findings show that "attitudes<br>towards AVs among people with<br>disabilities were significantly<br>influenced by their levels of interest<br>in new technology, generalized<br>anxiety, intensity of a person's<br>disability, prior knowledge of AVs,<br>locus of control and<br>action orientation."<br>Findings "proposes a | Provides insights into how AV<br>could perpetuate or create new<br>social inequalities.                                                                                                                                                                                                         |
| Canitez, F.                                                                                       | 2019 | Pathways to sustainable<br>urban mobility in<br>developing megacities.                           | Technological<br>Forecasting and Social<br>Change | Turkey  | Physical and<br>Economic         | socio-technical transition<br>perspective to examine and analyze<br>the urban mobility systems in<br>developing megacities. In addition,<br>a multi-level perspective is offered<br>to understand the dynamics of<br>sustainable urban<br>mobility transitions"                                                                  | Provides insights into attitudes<br>towards AV among those with<br>intellectual disability and<br>those without.                                                                                                                                                                                |
| Creitzig et al.                                                                                   | 2019 | Leveraging digitalization<br>for sustainability in urban<br>transport.                           | Global Sustainability                             | Germany | Institutional                    | Concludes that "only strong public<br>policies can steer digitalization<br>towards fostering sustainability in<br>urban transport."                                                                                                                                                                                              | Provides insights into the<br>importance of policy in smart<br>technology development.                                                                                                                                                                                                          |

| Author                                                                           | Year | Title                                                                                   | Journal                                            | Country   | Category                         | Findings                                                                                                                                                                                                                                                                                                                                                                                                            | Relevance                                                                                                                                                                                    |
|----------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------|----------------------------------------------------|-----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Curtis, C., Stone, J.,<br>Legacy, C.,<br>and Ashmore, D.                         | 2019 | Governance of future<br>urban mobility.                                                 | Urban Policy and<br>Research                       | Australia | Physical and<br>Economic         | "Findings from industry<br>engagement workshop highlight<br>the complexity of issues and<br>questions surrounding MaaS<br>implementation."                                                                                                                                                                                                                                                                          | Discusses how the change from a<br>PMV to more sustainable system<br>is reliant on the cost of transport<br>regulations, planning, land use,<br>technology, public awareness<br>and culture. |
| Dean, J., Wray, A.,<br>Braun, L., Casello, J.,<br>McCallum, L.,<br>and Gower, S. | 2019 | Holding the keys to<br>health?                                                          | BMC Public Health                                  | Canada    | Psychological<br>and Information | Findings show "there is general<br>agreement that AVs will improve<br>road safety overall, thus reducing<br>injuries and fatalities from human<br>errors in operating motorized<br>vehicles. However, the<br>relationships with air quality,<br>physical activity, and stress, among<br>other health factors may be<br>more complex."                                                                               | Discusses how when MaaS is<br>implemented with AV there is a<br>risk that those currently able to<br>operate a PMV will have access to<br>private AV.                                        |
| Freemark, Y.,<br>Hudson, A.,<br>and Zhao, J.                                     | 2019 | Are cities prepared for autonomous vehicles?                                            | Journal of the<br>American Planning<br>Association | USA       | Physical and<br>Economic         | Findings show that: (1) planning<br>for AV is not widespread; (2) bigger<br>cities are more likely to have<br>started planning for AV; (3) there is<br>optimism among local officials<br>regarding the potential increase in<br>safety, and decrease in costs and<br>pollution associated with AV; and<br>(4) over one-third of local officials<br>are concerned about the impact AV<br>will have on VKT and public | Discuss how AVs can contribute<br>to the improved safety but<br>increased reliance on technology<br>opens up additional risks.                                                               |
| Goggin et al.                                                                    | 2019 | Disability at the centre of digital inclusion.                                          | Communication<br>Research and Practice,            | Australia | Psychological and Information    | transport ridership.<br>Concludes "that 'disability and<br>digital inclusion' should be<br>specifically also placed at the heart<br>of digital economy policy                                                                                                                                                                                                                                                       | Provides insights into digital divide and disability                                                                                                                                         |
| Groth, S.                                                                        | 2019 | Multimodal divide:<br>Reproduction of transport<br>poverty in smart mobility<br>trends. | Transportation<br>Research Part A                  | Germany   | Psychological<br>and Information | and plans"<br>Findings show that smart mobility<br>can potentially contribute to<br>transport poverty by: (a) providing<br>an unequal distribution of mode<br>options; (b) excluding those who<br>are unable to use technology; and<br>(c) excluding those who are<br>unwilling to us technology due to<br>privacy concerns.                                                                                        | Discusses how improved costs<br>and accessibility associated with<br>AV may reduce public<br>transport use.                                                                                  |

|                                                        |      |                                                                                                             | Id                                | ble Al. Com |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author                                                 | Year | Title                                                                                                       | Journal                           | Country     | Category                 | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relevance                                                                                                                                                                                                                                               |
| Hawkins, J., and<br>Habib, K. N.                       | 2019 | Heterogeneity in marginal value of urban mobility.                                                          | Transportation                    | Canada      | Temporal and<br>Spatial  | "Findings reveal the potential for<br>social exclusion follow the<br>adoption of MaaS."                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discuss how smart mobility may contribute to social exclusion.                                                                                                                                                                                          |
| Jokinen, JP.,<br>Sihvola, T., and<br>Mladenovic, M. N. | 2019 | Policy lessons from the<br>flexible transport service<br>pilot Kutsuplus in the<br>Helsinki Capital Region. | Transport Policy                  | Finland     | Temporal and<br>Spatial  | Findings "provide a range of<br>guidelines and lessons for future<br>urban FMTS"                                                                                                                                                                                                                                                                                                                                                                                                                                           | Discusses how MaaS would likely<br>result in higher transport costs for<br>those in low density areas and<br>governments will likely need to<br>provide subsidies and planning<br>interventions in order to ensure<br>equitable access to transport.    |
| Kandt, J., and Leak, A.                                | 2019 | Examining inclusive<br>mobility through<br>smartcard data.                                                  | Journal of Transport<br>Geography | UK          | Temporal and<br>Spatial  | Findings show "first, the decline in<br>patronage occurs in three waves<br>across the study period according<br>to distinct activity patterns; second,<br>formerly frequent (daily)<br>passengers tend to abandon the bus<br>and thus show the largest impact<br>on the overall trend; third, the<br>neighbourhood context of<br>withdrawing passengers indicates<br>social disadvantage, higher<br>instance of ethnic minorities and<br>lower car ownership rates, in other<br>words higher risk of<br>social exclusion." | Provides insights into the<br>importance of DRT to direct users<br>to major transport hubs, how<br>users are more sensitive to travel<br>time than cost, and how<br>technology can improve<br>efficiency of DRT.                                        |
| Kuzio, J.                                              | 2019 | Planning for Social Equity<br>and Emerging<br>Technologies.                                                 | Transportation<br>Research Record | USA         | Physical and<br>Economic | Findings show that 80% of<br>metropolitan planning<br>organizations have plans that<br>included a response to social equity,<br>however, only 20% of plans<br>considered how new technologies<br>would impact on social equity.                                                                                                                                                                                                                                                                                            | Describes how MaaS can<br>contribute to improved public<br>transport use in low density, less<br>accessibility areas by providing a<br>connection to major public<br>transport hubs, and creating<br>synergies between a range of<br>transport options. |
| Le Boennec, R.,<br>Nicolaï, I., and<br>Da Costa, P.    | 2019 | Assessing 50 innovative<br>mobility offers in<br>low-density areas.                                         | Transport Policy                  | France      | Temporal and<br>Spatial  | Develops a two-step<br>decision-making tool to assist local<br>governments with planning<br>and implementing<br>transportation policies.                                                                                                                                                                                                                                                                                                                                                                                   | Describes how the benefits of AV<br>including the ability to work, eat<br>and rest while in transit could be<br>highly desirable and result in<br>increased cost, VKT, and demand<br>on infrastructure.                                                 |

Table A1. Cont.

| Author                                                                     | Year | Title                                                            | Journal                               | Country            | Category                         | Findings                                                                                                                                                                                                                        | Relevance                                                                                                                                                                                        |
|----------------------------------------------------------------------------|------|------------------------------------------------------------------|---------------------------------------|--------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legacy, C.,<br>Ashmore, D., Scheurer,<br>J., Stone, J., and<br>Curtis, C., | 2019 | Planning the driverless<br>city.                                 | Transport Reviews                     | Australia          | Physical and<br>Economic         | Findings reveal "the conceptual<br>gaps in the framing of AV<br>technology—the prospects and<br>limits—and how these<br>are conceived"                                                                                          | Discusses how despite new<br>technology encouraging walking<br>is still key to reducing social<br>exclusion as walking is costless,<br>and contributes to<br>improved health.                    |
| Liu, C., Yu, B., Zhu, Y.,<br>Liu, L., and Li, P.                           | 2019 | Measurement of rural<br>residents' mobility in<br>western China. | Sustainability                        | China              | Temporal and<br>Spatial          | Findings "show that Qingyang's<br>rural mobility is at a low level, but<br>differences in the types of rural<br>residents, districts and counties,<br>and dimensions of mobility<br>are observed."                              | Discusses how for AV to reduce<br>some of the social equity issues<br>associated with the PMV it<br>should be introduced as part of a<br>system integrated with existing<br>transport providers. |
| Martin, G.                                                                 | 2019 | An Ecosocial Frame for<br>Autonomous Vehicles.                   | Capitalism Nature<br>Socialism        | USA                | Physical and<br>Economic         | "As is usually the case with a new<br>technological consumer product,<br>discourse centers on its promises,<br>not its perils. Largely ignored are<br>potential impacts on social justice<br>and environmental sustainability." | Provides insights into how<br>information availability in lower<br>density areas is critical for the<br>success of many smart<br>mobility applications.                                          |
| Martínez-Díaz, M.,<br>Soriguera, F., and<br>Pérez, I.                      | 2019 | Autonomous driving: a bird's eye view.                           | IET Intelligent<br>Transport Systems  | Spain              | Psychological<br>and Information | Provides an overall state-of-the-art<br>of the development of AV and<br>identifies the issues critical for<br>its success.                                                                                                      | Discusses risk that AV will be<br>expensive and exclude low<br>income residents and how<br>subsidized SAV may provide a<br>viable alternative.                                                   |
| Meelen, T.,<br>Frenken, K., and<br>Hobrink, S.                             | 2019 | Weak spots for car-sharing<br>in The Netherlands?                | Energy Research and<br>Social Science | The<br>Netherlands | Physical and<br>Economic         | Findings "demonstrate how the<br>relation between niche innovation<br>and the socio-technical regime of<br>private car ownership affects<br>adoption patterns."                                                                 | Discusses how while AV are<br>expected to bring a much safer<br>driving environment,<br>acceptability among people over<br>50 is still quite low.                                                |

| Author                                                              | Year | Title                                                                                     | Journal                                                        | Country     | Category                         | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Relevance                                                                                                                                                               |
|---------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nordhoff, S.,<br>Kyriakidis, M.,<br>van Arem, B., and<br>Happee, R. | 2019 | A multi-level model on<br>automated vehicle<br>acceptance (MAVA).                         | Theoretical Issues in<br>Ergonomics Science                    | Switzerland | Psychological<br>and Information | Findings reveal "that 6% of the<br>studies investigated the exposure<br>of individuals to AVs (i.e.,<br>knowledge and experience). 22% of<br>the studies investigated<br>domain-specific factors (i.e.,<br>performance and effort expectancy,<br>safety, facilitating conditions, and<br>service and vehicle characteristics),<br>4% symbolic-affective factors (i.e.,<br>hedonic motivation and social<br>influence), and 12%<br>moral-normative factors (i.e.,<br>perceived benefits and risks).<br>Factors related to a person's<br>socio-demographic profile, travel<br>behavior and personality were<br>investigated by 28%, 15% and 14%<br>of the studies, respectively. "<br>Findings show that there is much | Discusses how car sharing<br>contributes to improved<br>accessibility for those without<br>access to a vehicle—satisfying<br>basic needs relating to<br>transportation. |
| Ortar, N., and<br>Ryghaug, M.                                       | 2019 | Should all cars be electric by 2025?                                                      | Sustainability                                                 | UK          | Temporal and<br>Spatial          | uncertainty regarding how the<br>transition between fuel-based and<br>electric vehicles occurs including<br>issues of efficiency, affordability<br>and sustainability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Discusses how the general public<br>perceives AV and identifies risks<br>they associate with the<br>technology.                                                         |
| Ruan et al.                                                         | 2019 | Social adaptation and<br>adaptation pressure<br>among the "drifting<br>elderly" in China. | International Journal<br>of Health Planning<br>and Management, | China       | Institutional                    | "The drifting elderly had poor<br>adaptation regarding self-identity,<br>daily activities, and social context."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Discusses issues of digital divide<br>among elderly migrants                                                                                                            |
| Sener, I. N., Zmud, J.,<br>and Williams, T.                         | 2019 | Measures of baseline<br>intent to use automated<br>vehicles                               | Transportation<br>Research Part F                              | USA         | Psychological<br>and Information | Findings show "the strongest<br>associations with intent to use<br>(AVs) were observed for attitudes<br>toward self-driving vehicles,<br>performance expectation, perceived<br>safety, and social influence."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Describes social equity issues surrounding the introduction of EM.                                                                                                      |
| Sovacool, B.,<br>Martiskainen, M.,<br>Hook, A., and<br>Baker, L.    | 2019 | Decarbonization and its discontents.                                                      | Climatic Change                                                | UK          | Temporal and<br>Spatial          | Develops a framework for "energy<br>justice" with four distinct<br>dimensions: (a) distributive justice;<br>(b) procedural justice;<br>(c) cosmopolitan justice; and<br>(d) recognition justice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Discusses how AV bring a significant, and uncertain impact on the transport system.                                                                                     |

| Author                                                                                    | Year | Title                                                                                       | Journal                           | Country     | Category                         | Findings                                                                                                                                                                                                                                                    | Relevance                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------|-----------------------------------|-------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tang, C. S., and<br>Veelenturf, L. P.                                                     | 2019 | The strategic role of<br>logistics in the industry<br>4.0 era                               | Transportation<br>Research Part E | USA         | Psychological<br>and Information | Concludes that companies must<br>take measures to ensure underlying<br>risks associated with technological<br>advancements including: (a)<br>cyber-attacks; (b) faulty data; (c)<br>safety regulations; and (d) privacy.<br>Findings show that DRT services | Discusses how those in rural, or<br>low density, sparsely populated<br>areas may not be able to fully<br>benefit from smart technology<br>due to network coverage, and<br>electricity prices. |
| Viergutz, K., and<br>Schmidt, C.                                                          | 2019 | Demand responsive - vs.<br>conventional public<br>transportation.                           | Procedia Computer<br>Science      | Germany     | Temporal and<br>Spatial          | may not be the solution to public<br>transport in rural areas and further<br>research is need to balance access,<br>financial, service, and pollution<br>issues associated with DRT.                                                                        | Discusses risks associated with AV and ITS.                                                                                                                                                   |
| Waseem et al.                                                                             | 2019 | Integration of solar energy<br>in electrical, hybrid,<br>autonomous vehicle                 | SN Applied Science                | India       | Physical and<br>Economic         | "Overview of electric and hybrid<br>vehicles suggests that in a<br>developing country such as India,<br>there is a huge demand for<br>green-powered electric vehicles for<br>the transportation sector."                                                    | Discusses demand for green-powered vehicles.                                                                                                                                                  |
| ʻigitcanlar, T., Han, H.,<br>Kamruzzaman, M.,<br>Ioppolo, G., and<br>Sabatini-Marques, J. | 2019 | The making of smart cities.                                                                 | Land Use Policy                   | Australia   | Psychological<br>and Information | Findings "disclose the need for a<br>comprehensive smart city<br>conceptualization to inform<br>policymaking and consequently the<br>practice."                                                                                                             | Discusses how AV could assist<br>the development of DRT in low<br>demand areas, reducing costs,<br>and making the system operate<br>more efficiently.                                         |
| Zhou, J.                                                                                  | 2019 | Ride-sharing service<br>planning based on<br>smartcard data                                 | Transport Policy                  | China       | Physical and<br>Economic         | Findings show "that some<br>low-demand transit routes can<br>probably be replaced by Uber at a<br>lower level of overall costs."                                                                                                                            | Provides insights into cities that<br>use technology enabled smart<br>traffic systems.                                                                                                        |
| Becker et al.                                                                             | 2020 | Assessing the welfare<br>impacts of Shared<br>Mobility and Mobility as a<br>Service (MaaS). | Transportation<br>Research Part A | Switzerland | Psychological and Information    | "Results show that in Zurich,<br>through less biased mode choice<br>decisions alone, transport-related<br>energy consumption can be<br>reduced by 25%"                                                                                                      | Discusses role of MaaS in providing users an unbiased choice of modes.                                                                                                                        |
| Bissell, D.,<br>Birtchnell, T., Elliott,<br>A., and Hsu, E. L.                            | 2020 | Autonomous automobilities.                                                                  | Current Sociology                 | Australia   | Physical and<br>Economic         | Shows "how a mobilities approach<br>provides an ideal conceptual lens<br>through which the broader social<br>impacts of autonomous vehicles<br>might be identified and evaluated."                                                                          | Discusses social issues<br>surrounding introduction of AV                                                                                                                                     |

| Author        | Year | Title                                                                                                                       | Journal                         | Country   | Category                 | Findings                                                                                                                                                                                                                                                                                                                        | Relevance                                                                                                                                                                                                           |
|---------------|------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ferdman, A.   | 2020 | Corporate ownership of automated vehicles.                                                                                  | Transport Reviews               | Germany   | Physical and<br>Economic | "Proposes a new angle on the<br>relationship between ownership<br>models of automated vehicles and<br>implications for travel."                                                                                                                                                                                                 | Describe how for shared mobility<br>to work in rural areas a broad<br>base of users is required, large<br>investments from the start, and<br>strong connection with the<br>broader region -<br>particularly cities. |
| Guo and Peeta | 2020 | Impacts of personalized<br>accessibility information<br>on residential location<br>choice and travel<br>behavior.           | Travel, Behavior and<br>Society | USA       | Temporal and<br>Spatial  | Results "show that personalized<br>accessibility information can<br>potentially make relocators more<br>informed about travel-related<br>information, and assists them in<br>selecting a residence that better<br>addresses their travel needs based<br>on higher accessibility to potential<br>destinations."                  | Discusses the use of ICT to help<br>residents make more<br>informed choice.                                                                                                                                         |
| Guo et al.    | 2020 | Personal and societal<br>impacts of motorcycle ban<br>policy on motorcyclists'<br>home-to-work morning<br>commute in China. | Travel, Behavior and<br>Society | USA       | Institutional            | "These results suggest that policy<br>and infrastructural support for<br>using public transit, walk, and bike<br>modes, household mobility, and<br>plan to purchase a car were likely<br>to affect the personal and societal<br>impacts of the motorcycle ban<br>policy on travel mode shifts"                                  | Provides insights into the impact<br>of policy and laws on travel<br>mode choice.                                                                                                                                   |
| Hoque et al.  | 2020 | Life Cycle Sustainability<br>Assessment of Alternative<br>Energy Sources for the<br>Western Australian<br>Transport Sector  | Sustainability                  | Australia | Physical and<br>Economic | "The results show that the<br>environment-friendly and socially<br>sustainable energy options, namely,<br>ethanol-gasoline blend E55,<br>electricity, electricity-E10 hybrid,<br>and hydrogen, would need around<br>0.02, 0.14, 0.10, and 0.71 AUD/VKT<br>of financial support, respectively, to<br>be comparable to gasoline." | Discusses economic sustainability<br>of alternative fuel vehicles                                                                                                                                                   |
| Liu et al.    | 2020 | A tale of two social<br>groups in Xiamen, China:<br>Trip frequency of<br>migrants and locals and<br>its determinants.       | Travel, Behavior and<br>Society | Hong Kong | Institutional            | "Highlights the importance of<br>context and population<br>differentiation and calls for more<br>in-depth research on migrants'<br>travel behaviors as well as their<br>determinants."                                                                                                                                          | Provides insights into barriers<br>related to infrastructure<br>provision.                                                                                                                                          |

| Author                          | Year | Title                                                                                                                                                                   | Journal                           | Country   | Category                 | Findings                                                                                                                                                                                                                                                                                                                   | Relevance                                                                                       |
|---------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Meng et al.                     | 2020 | Policy implementation of<br>multi-modal (shared)<br>mobility.                                                                                                           | Transport Reviews                 | Australia | Institutional            | "Suggests that policy<br>entrepreneurship in collaboration<br>with other partners, policy<br>innovation, and the notions of<br>merit goods and second-best<br>policymaking can enable policy<br>initiatives towards multi-modal<br>shared mobility and provide<br>supporting arguments if policies<br>encounter failures." | Discusses the importance of<br>policy in development of<br>shared mobility                      |
| Rojas-Rueda et al.              | 2020 | Autonomous Vehicles and<br>Public Health.                                                                                                                               | Annual Review of<br>Public Health | USA       | Physical and<br>Economic | Provides recommendations for the use of AV to improve public health.                                                                                                                                                                                                                                                       | Provides insights into some<br>benefits and issues with AV from<br>a public health perspective. |
| Soares Machado et al.           | 2020 | Placement of<br>Infrastructure for Urban<br>Electromobility                                                                                                             | Sustainability                    | Brazil    | Temporal and<br>Spatial  | Results "shows that districts with<br>the largest demand for charging<br>stations are located in the central<br>area, where the population also<br>exhibits the highest                                                                                                                                                    | Discusses issues associated with<br>electric mobility in low density<br>and rural areas.        |
| Tao et al.                      | 2020 | Investigating the impacts<br>of public transport on job<br>accessibility in Shenzhen,<br>China.                                                                         | Land Use Policy                   | China     | Physical and<br>Economic | purchasing power"<br>"Highlights land use and transport<br>policy countermeasures to improve<br>job accessibility by<br>public transport."                                                                                                                                                                                 | Discusses how job accessibility is<br>greatly improved if one has<br>access to a PMV            |
| Tomej, K., and<br>Liburd, J. J. | 2020 | Sustainable accessibility in rural destinations.                                                                                                                        | Journal of Sustainable<br>Tourism | Austria   | Temporal and<br>Spatial  | Findings "demonstrates the use of<br>sustainable transport accessibility<br>as a measure for transport<br>evaluation that considers both<br>environmental aspects and social<br>justice framed as sustainable<br>tourism participation for all."                                                                           | Provides insights into the use of<br>DRT in rural areas with high<br>levels of tourism.         |
| Turoń and Kubik                 | 2020 | Economic Aspects of<br>Driving Various Types of<br>Vehicles in Intelligent<br>Urban Transport Systems,<br>Including Car-Sharing<br>Services and Autonomous<br>Vehicles. | Applied Science                   | Poland    | Physical and<br>Economic | "Results indicate the relation of<br>travel parameters (including<br>vehicle type) to the total cost of<br>travel in urban transport systems."                                                                                                                                                                             | Discusses the economic<br>sustainability of AV and<br>shared transport                          |

# References

- 1. Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Ioppolo, G. How can life cycle thinking support sustainability of buildings? *J. Clean. Prod.* **2018**, *201*, 556–569. [CrossRef]
- 2. Arbolino, R.; De Simone, L.; Carlucci, F.; Yigitcanlar, T.; Ioppolo, G. Towards a sustainable industrial ecology. *J. Clean. Prod.* **2018**, *178*, 220–236. [CrossRef]
- 3. Lee, S.H.; Yigitcanlar, T.; Han, J.H.; Leem, Y.T. Ubiquitous urban infrastructure: Infrastructure planning and development in Korea. *Innovation* **2008**, *10*, 282–292. [CrossRef]
- 4. Yigitcanlar, T.; Mohamed, A.; Kamruzzaman, M.; Piracha, A. Understanding transport-related social exclusion. *Urban Pol. Res.* **2019**, *37*, 97–110. [CrossRef]
- 5. Currie, G.; Delbosc, A. Modelling the social and psychological impacts of transport disadvantage. *Transportation* **2010**, *37*, 953–966. [CrossRef]
- Duvarci, Y.; Yigitcanlar, T.; Mizokami, S. Transportation disadvantage impedance indexing. *J. Transp. Geogr.* 2015, 48, 61–75. [CrossRef]
- Yigitcanlar, T.; Dodson, J.; Gleeson, B.; Sipe, N. Travel self-containment in master planned estates. *Urban Pol. Res.* 2007, 25, 129–149. [CrossRef]
- 8. Delbosc, A.; Currie, G. The spatial context of transport disadvantage, social exclusion and well-being. *J. Transp. Geogr.* **2011**, *19*, 1130–1137. [CrossRef]
- 9. Yigitcanlar, T.; Wilson, M.; Kamruzzaman, M. Disruptive impacts of automated driving systems on the built environment and land use. *JOItmC* 2019, *5*, 24. [CrossRef]
- 10. Noy, K.; Givoni, M. Is 'Smart Mobility' Sustainable? Sustainability 2018, 10, 422. [CrossRef]
- 11. Yigitcanlar, T.; Kamruzzaman, M. Smart cities and mobility. J. Urban Technol. 2019, 26, 21-46. [CrossRef]
- 12. Golbabaei, F.; Yigitcanlar, T.; Bunker, J. The role of shared autonomous vehicle systems in delivering smart urban mobility. *Int. J. Sustain. Transp.* **2020**. [CrossRef]
- 13. Yigitcanlar, T.; Han, H.; Kamruzzaman, M.; Ioppolo, G.; Sabatini-Marques, J. The making of smart cities. *Land Use Policy* **2019**, *88*, 104187. [CrossRef]
- 14. Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; Da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? *Sustain. Cities Soc.* **2019**, *45*, 348–365. [CrossRef]
- 15. Yigitcanlar, T.; Desouza, K.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities. *Energies* **2020**, *13*, 1473. [CrossRef]
- Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.; Mehmood, R.; Corchado, J. Can building 'artificially intelligent cities' protect humanity from natural disasters, pandemics and other catastrophes? *Sensors* 2020, 20, 2988. [CrossRef]
- 17. Kaufman, B. 1 Million Rides and Counting. The Conversation 2020. Available online: https://theconversation. com/1-million-rides-and-counting-on-demand-services-bring-public-transport-to-the-suburbs-132355 (accessed on 1 May 2020).
- Mahbub, P.; Goonetilleke, A.; Ayoko, G.A.; Egodawatta, P.; Yigitcanlar, T. Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia. *Water Sci. Technol.* 2011, 63, 2077–2085. [CrossRef]
- 19. Dowling, R. Smart Cities: Does This Mean More Transport Disruption. The Conversation 2016. Available online: https://theconversation.com/smart-cities-does-this-mean-more-transport-disruptions-63638 (accessed on 1 May 2020).
- 20. Kane, M.; Whitehead, J. How to ride transport disruption. Aust. Plan. 2017, 54, 177–185. [CrossRef]
- 21. De Percy, M. Taxi Driver Compensation for Uber Is Unfair and Poorly Implemented. The Conversation 2016. Available online: https://theconversation.com/taxi-driver-compensation-for-uber-is-unfair-and-poorly-implemented-64354 (accessed on 1 May 2020).
- Munton, J.R. Explainer: What Rights Do Workers Have to Getting Paid in the Gig Economy? The Conversation 2017. Available online: https://theconversation.com/explainer-what-rights-do-workers-have-to-gettingpaid-in-the-gig-economy-70281 (accessed on 1 May 2020).
- Barratt, T.; Veen, A.; Goods, C.; Josserand, E.; Kaine, S. As Yet Another Ridesharing Platform Launches in Australia, How Does This All End? The Conversation 2018. Available online: https://theconversation. com/as-yet-another-ridesharing-platform-launches-in-australia-how-does-this-all-end-98389 (accessed on 1 May 2020).

- 24. Docherty, I.; Marsden, G.; Anable, J. The governance of smart mobility. *Trans. Res. Part A Policy Pract.* **2018**, *115*, 114–125. [CrossRef]
- 25. Suhl, K.; Carreno, M. Can transport-related social exclusion be measured? In Proceedings of the 8th International Conference, Vilnius, Lithuania, 19–20 May 2011; pp. 1001–1008.
- Mageean, J.; Nelson, J.D. The evaluation of demand responsive transport services in Europe. *J. Transp. Geogr.* 2003, 11, 255–270. [CrossRef]
- 27. Brake, J.; Nelson, J.D.; Wright, S. Demand responsive transport. J. Transp. Geogr. 2004, 12, 323–337. [CrossRef]
- 28. Battellino, H. Transport for the transport disadvantaged. Trans. Policy 2009, 16, 123–129. [CrossRef]
- 29. Nelson, J.D.; Wright, S.; Masson, B.; Ambrosino, G.; Naniopoulos, A. Recent developments in Flexible Transport Services. *Res. Transp. Econ.* **2010**, *29*, 243–248. [CrossRef]
- 30. Nelson, J.D.; Phonphitakchai, T. An evaluation of the user characteristics of an open access DRT service. *Res. Transp. Econ.* **2012**, *34*, 54–65. [CrossRef]
- Wang, C.; Quddus, M.; Enoch, M.; Ryley, T.; Davison, L. Multilevel modelling of Demand Responsive Transport (DRT) trips in Greater Manchester based on area-wide socio-economic data. *Transportation* 2014, 41, 589–610. [CrossRef]
- 32. Gomes, R.; Pinho de Sousa, J.; Galvão Dias, T. Sustainable Demand Responsive Transportation systems in a context of austerity. *Res. Transp. Econ.* **2015**, *51*, 94–103. [CrossRef]
- Viergutz, K.; Schmidt, C. Demand responsive vs. conventional public transportation. *Procedia Comput. Sci.* 2019, 151, 69–76. [CrossRef]
- 34. Clark, J.; Curl, A. Bicycle and car share schemes as inclusive modes of travel? Soc. Incl. 2016, 4, 83–99. [CrossRef]
- 35. Illgen, S.; Höck, M. Establishing car sharing services in rural areas. *Transportation* 2020, 47, 811–826. [CrossRef]
- 36. Jin, S.T.; Kong, H.; Wu, R.; Sui, D.Z. Ridesourcing, the sharing economy, and the future of cities. *Cities* **2018**, *76*, 96–104. [CrossRef]
- 37. Li, X.; Zhang, Y.; Sun, L.; Liu, Q. Free-floating bike sharing in Jiangsu. Energies 2018, 11, 1664. [CrossRef]
- 38. Soares Machado, C.; de Salles Hue, N.P.M.; Berssaneti, F.T.; Quintanilha, J.A. An overview of shared mobility. *Sustainability* **2018**, *10*, 4342. [CrossRef]
- 39. Axsen, J.; Sovacool, B.K. The roles of users in electric, shared and automated mobility transitions. *Transp. Res. D Transp. Environ.* **2019**, *71*, 1–21. [CrossRef]
- 40. Martin, G. An ecosocial frame for autonomous vehicles. Capital. Nat. Social. 2019, 30, 55–70. [CrossRef]
- 41. Meelen, T.; Frenken, K.; Hobrink, S. Weak spots for car-sharing in The Netherlands? *Energy Res. Soc. Sci.* **2019**, *52*, 132–143. [CrossRef]
- 42. Zhou, J. Ride-sharing service planning based on smartcard data. Trans. Policy 2019, 79, 1–10. [CrossRef]
- 43. Brake, J.; Nelson, J.D. A case study of flexible solutions to transport demand in a deregulated environment. *J. Transp. Geogr.* **2007**, *15*, 262–273. [CrossRef]
- 44. Davidsson, P.; Hajinasab, B.; Holmgren, J.; Jevinger, Å.; Persson, J. The fourth wave of digitalization and public transport. *Sustainability* **2016**, *8*, 1248. [CrossRef]
- 45. Chen, Y.; Ardila-Gomez, A.; Frame, G. Achieving energy savings by intelligent transportation systems investments in the context of smart cities. *Transp. Res. D Transp. Environ.* **2017**, *54*, 381–396. [CrossRef]
- Melo, S.; Macedo, J.; Baptista, P. Guiding cities to pursue a smart mobility paradigm. *Res. Transp. Econ.* 2017, 65, 24–33. [CrossRef]
- 47. Wells, P. Converging transport policy, industrial policy and environmental policy. *Local Econ.* **2012**, *27*, 749–763. [CrossRef]
- 48. Hoque, N.; Biswas, W.; Howard, I. Life cycle sustainability assessment of alternative energy sources for the western australian transport sector. *Sustainability* **2020**, *12*, 5565. [CrossRef]
- 49. Bigerna, S.; Polinori, P. Willingness to pay and public acceptance for hydrogen buses. *Sustainability* **2015**, *7*, 13270–13289. [CrossRef]
- 50. Ortar, N.; Ryghaug, M. Should all cars be electric by 2025? Sustainability 2019, 11, 1868. [CrossRef]
- 51. Thomopoulos, N.; Givoni, M. The autonomous car—A blessing or a curse for the future of low carbon mobility? *Eur. J. Futures Res.* **2015**, *3*, 1–14. [CrossRef]
- 52. Milakis, D.; van Arem, B.; van Wee, B. Policy and society related implications of automated driving. *J. Intell. Transp. Syst.* **2017**, *21*, 324–348. [CrossRef]
- 53. Milakis, D.; Kroesen, M.; van Wee, B. Implications of automated vehicles for accessibility and location choices. *J. Transp. Geogr.* **2018**, *68*, 142–148. [CrossRef]

- 54. Lim, H.S.; Taeihagh, A. Autonomous vehicles for smart and sustainable cities. *Energies* **2018**, *11*, 1062. [CrossRef]
- 55. Dean, J.; Wray, A.; Braun, L.; Casello, J.; McCallum, L.; Gower, S. Holding the keys to health? *BMC Public Health* **2019**, *19*, 1258.
- 56. Bissell, D.; Birtchnell, T.; Elliott, A.; Hsu, E.L. Autonomous automobilities. *Curr. Sociol.* **2020**, *68*, 116–134. [CrossRef]
- 57. Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Khreis, H.; Frumkin, H. Autonomous vehicles and public health. *Annu. Rev. Public Health* **2020**, *41*, 329–345. [CrossRef]
- 58. Mulley, C.; Kronsell, A. The "uberisation" of public transport and mobility as a service (MaaS). *Res. Transp. Econ.* **2018**, *69*, 568–572. [CrossRef]
- 59. Hawkins, J.; Habib, K.N. Heterogeneity in marginal value of urban mobility. Transportation 2019. [CrossRef]
- 60. Becker, H.; Balac, M.; Ciari, F.; Axhausen, K.W. Assessing the welfare impacts of shared mobility and mobility as a service (MaaS). *Trans. Res. Part A Policy Pract.* **2020**, *131*, 228–243. [CrossRef]
- 61. Van Engelen, M.; Cats, O.; Post, H.; Aardal, K. Enhancing flexible transport services with demand-anticipatory insertion heuristics. *Transp. Res. E Logist. Transp. Rev.* **2018**, *110*, 110–121. [CrossRef]
- 62. Yigitcanlar, T.; Kankanamge, N.; Vella, K. How are smart city concepts and technologies perceived and utilized? a systematic geo-twitter analysis of smart cities in Australia. *J. Urban Technol.* **2020**. [CrossRef]
- 63. Winter, K.; Cats, O.; Correia, G.; van Arem, B. Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service. *IJTST* **2018**, *7*, 151–167. [CrossRef]
- 64. Matyas, M.; Kamargianni, M. The potential of mobility as a service bundles as a mobility management tool. *Transportation* **2019**, *46*, 1951–1968. [CrossRef]
- 65. Czioska, P.; Kutadinata, R.; Trifunović, A.; Winter, S.; Sester, M.; Friedrich, B. Real-world meeting points for shared demand-responsive transportation systems. *Public Transp.* **2019**, *11*, 341–377. [CrossRef]
- 66. Harrison, G.; Shepherd, S. An interdisciplinary study to explore impacts from policies for the introduction of low carbon vehicles. *Transp. Plan. Technol.* **2014**, *37*, 98–117. [CrossRef]
- 67. Tao, Z.; Zhou, J.; Lin, X.; Chao, H.; Li, G. Investigating the impacts of public transport on job accessibility in Shenzhen, China. *Land Use Policy* **2020**, *99*, 105025. [CrossRef]
- 68. O'Shaughnessy, M.; Casey, E.; Enright, P. Rural transport in peripheral rural areas. *Soc. Enterp. J.* **2011**, *7*, 183–190. [CrossRef]
- 69. Broome, K.; Worrall, L.; Fleming, J.; Boldy, D. Evaluation of flexible route bus transport for older people. *Trans. Policy* **2012**, *21*, 85–91. [CrossRef]
- 70. Faisal, A.; Yigitcanlar, T.; Kamruzzaman, M.; Currie, G. Understanding autonomous vehicles. *J. Transp. Land Use* **2019**, *12*, 45–72. [CrossRef]
- 71. Mackett, R. Improving accessibility for older people. J. Transp. Health 2015, 2, 5–13. [CrossRef]
- 72. Adnan, N.; Md Nordin, S.; Bin Bahruddin, M.A.; Ali, M. How trust can drive forward the user acceptance to the technology? *Trans. Res. Part A Policy Pract.* **2018**, *118*, 819–836. [CrossRef]
- 73. Wong, S. Traveling with blindness. *Health Place* 2018, 49, 85–92. [CrossRef]
- 74. Faisal, A.; Yigitcanlar, T.; Kamruzzaman, M.; Paz, A. Mapping two decades of autonomous vehicle research. *J. Urban Technol.* **2020**. [CrossRef]
- 75. Haustein, S.; Siren, A. Older people's mobility. Transp. Rev. 2015, 35, 466–487. [CrossRef]
- Curtis, C.; Stone, J.; Legacy, C.; Ashmore, D. Governance of future urban mobility. *Urban Pol. Res.* 2019, 37, 393–404. [CrossRef]
- Canitez, F. Pathways to sustainable urban mobility in developing megacities. *Technol. Forecast. Soc. Chang.* 2019, 141, 319–329. [CrossRef]
- 78. Zografos, K.; Androutsopoulos, K.; Sihvola, T. A methodological approach for developing and assessing business models for flexible transport systems. *Transportation* **2008**, *35*, 777–795. [CrossRef]
- 79. Stanley, J.; Lucas, K. Workshop 6 Report: Delivering sustainable public transport. *Res. Transp. Econ.* **2014**, *48*, 315–322. [CrossRef]
- 80. Evans, G.; Guo, A.W.; Blythe, P.; Burden, M. Integrated smartcard solutions. *Transp. Plan. Technol.* **2015**, *38*, 534–551. [CrossRef]
- 81. Cheyne, C.; Imran, M. Shared transport. Energy Res. Soc. Sci. 2016, 18, 139–150. [CrossRef]
- 82. Gonzalez-Feliu, J.; Pronello, C.; Salanova Grau, J. Multi-stakeholder collaboration in urban transport. *Transport* **2018**, 33, 1079–1094. [CrossRef]

- Mulley, C.; Nelson, J.D.; Wright, S. Community transport meets mobility as a service. *Res. Transp. Econ.* 2018, 69, 583–591. [CrossRef]
- 84. Waseem, M.; Sherwani, A.; Suhaib, M. Integration of solar energy in electrical, hybrid, autonomous vehicles. *SN Appl. Sci.* **2019**, *1*, 1459. [CrossRef]
- 85. Turoń, K.; Kubik, A. Economic aspects of driving various types of vehicles in intelligent urban transport systems, including car-sharing services and autonomous vehicles. *Appl. Sci.* **2020**, *10*, 5580. [CrossRef]
- 86. Sun, Y.; Olaru, D.; Smith, B.; Greaves, S.; Collins, A. Road to autonomous vehicles in Australia. *Road Trans. Res.* **2017**, *26*, 34–47.
- 87. Kuzio, J. Planning for social equity and emerging technologies. *Transp. Res. Rec.* **2019**, 2673, 693–703. [CrossRef]
- 88. Newman, D. Cars and consumption. Cap. Cl. 2013, 37, 457-476. [CrossRef]
- 89. Newman, D. Automobiles and socioeconomic sustainability. Transfers 2017, 7, 100–106. [CrossRef]
- 90. Freemark, Y.; Hudson, A.; Zhao, J. Are cities prepared for autonomous vehicles? *JAPA* **2019**, *85*, 133–151. [CrossRef]
- 91. Ferdman, A. Corporate ownership of automated vehicles. Transp. Rev. 2020, 40, 95–113. [CrossRef]
- 92. Legacy, C.; Ashmore, D.; Scheurer, J.; Stone, J.; Curtis, C. Planning the driverless city. *Transp. Rev.* 2019, *39*, 84–102. [CrossRef]
- 93. Santos, G.; Behrendt, H.; Teytelboym, A. Part II: Policy instruments for sustainable road transport. *Res. Transp. Econ.* **2010**, *28*, 46–91. [CrossRef]
- 94. Grieco, M. Social sustainability and urban mobility. Soc. Responsib. J. 2015, 11, 82–97. [CrossRef]
- 95. Mulley, C.; Nelson, J.D. Flexible transport services. Res. Transp. Econ. 2009, 25, 39-45. [CrossRef]
- 96. Allen, J.; Farber, S. Sizing up transport poverty. Trans. Policy 2019, 74, 214–223. [CrossRef]
- 97. Leibert, T.; Golinski, S. Peripheralisation. Comp. Popul. Stud. 2016, 41, 255-284.
- 98. Lam, D.; Givens, J.W. Small and smart. New Glob. Stud. 2018, 12, 21–36. [CrossRef]
- 99. Liu, C.; Yu, B.; Zhu, Y.; Liu, L.; Li, P. Measurement of rural residents' mobility in western China. *Sustainability* **2019**, *11*, 2492. [CrossRef]
- Sovacool, B.; Martiskainen, M.; Hook, A.; Baker, L. Decarbonization and its discontents. *Clim. Chang.* 2019, 155, 581–619. [CrossRef]
- 101. Soares Machado, C.; Takiya, H.; Quintanilha, J. Placement of Infrastructure for Urban Electromobility. *Sustainability* **2020**, *12*, 6324. [CrossRef]
- 102. Le Boennec, R.; Nicolaï, I.; Da Costa, P. Assessing 50 innovative mobility offers in low-density areas. *Trans. Policy* **2019**, *83*, 13–25. [CrossRef]
- 103. Petersen, T. Watching the Swiss. Trans. Policy 2016, 52, 175–185. [CrossRef]
- 104. McLeod, S.; Scheurer, J.; Curtis, C. Urban Public Transport. J. Plan. Lit. 2017, 32, 223–239. [CrossRef]
- 105. Jokinen, J.P.; Sihvola, T.; Mladenovic, M.N. Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region. *Trans. Policy* **2019**, *76*, 123–133. [CrossRef]
- 106. Martinez, L.M.; Viegas, J.M.; Eiro, T. Formulating a new express minibus service design problem as a clustering problem. *Transp. Sci.* **2014**, *49*, 85–98. [CrossRef]
- 107. Ferreira, L.; Charles, P.; Tether, C. Evaluating flexible transport solutions. *Transp. Plan. Techn.* 2017, 30, 249–269. [CrossRef]
- 108. Akgöl, K.; Günay, B. Prediction of Modal Shift Using Artificial Neural Networks. TEM J. 2014, 3, 223–229.
- Kandt, J.; Leak, A. Examining inclusive mobility through smartcard data. J. Transp. Geogr. 2019, 79, 102474.
   [CrossRef]
- 110. Tomej, K.; Liburd, J.J. Sustainable accessibility in rural destinations. J. Sustain. Tour. 2020, 28, 222–239. [CrossRef]
- Lucas, K.; Currie, G. Developing socially inclusive transportation policy. *Transportation* 2012, 39, 151–173. [CrossRef]
- 112. Kammerlander, M.; Schanes, K.; Hartwig, F.; Jäger, J.; Omann, I.; O'Keeffe, M. A resource-efficient and sufficient future mobility system for improved well-being in Europe. *Eur. J. Futures Res.* **2015**, *3*, 1–11. [CrossRef]
- 113. Guo, Y.; Peeta, S. Impacts of personalized accessibility information on residential location choice and travel behavior. *Travel Behav. Soc.* **2020**, *19*, 99–111. [CrossRef]

- 114. Howard, A.; Borenstein, J. The ugly truth about ourselves and our robot creations. *Sci. Eng. Ethics.* **2018**, *24*, 1521–1536. [CrossRef]
- Beecroft, M.; Pangbourne, K. Future prospects for personal security in travel by public transport. *Transp. Plan. Techn.* 2015, *38*, 131–148. [CrossRef]
- 116. Beecroft, M.; Cottrill, C.D.; Farrington, J.H.; Nelson, J.D.; Niewiadomski, P. From infrastructure to digital networks. *Scott. Geogr. J.* 2015, *135*, 343–355. [CrossRef]
- 117. Groth, S. Multimodal divide. Trans. Res. Part A Policy Pract. 2019, 125, 56–71. [CrossRef]
- Sener, I.N.; Zmud, J.; Williams, T. Measures of baseline intent to use automated vehicles. *Transp. Res. Part F Traffic Psychol. Behav.* 2019, 62, 66–77. [CrossRef]
- Martínez-Díaz, M.; Soriguera, F.; Pérez, I. Autonomous driving: A bird's eye view. *IET Intell. Transp. Syst.* 2019, 13, 563–579. [CrossRef]
- 120. Tang, C.S.; Veelenturf, L.P. The strategic role of logistics in the industry 4.0 era. *Transp. Res. E Logist. Transp. Rev.* **2019**, 129, 1–11. [CrossRef]
- Nordhoff, S.; Kyriakidis, M.; van Arem, B.; Happee, R. A multi-level model on automated vehicle acceptance (MAVA). *Theor. Issues Ergon. Sci.* 2019, 20, 682–710. [CrossRef]
- 122. Shergold, I.; Parkhurst, G. Transport-related social exclusion amongst older people in rural Southwest England and Wales. *J. Rural Stud.* **2012**, *28*, 412–421. [CrossRef]
- 123. Graham, H.; de Bell, S.; Flemming, K.; Sowden, A.; White, P.; Wright, K. The experiences of everyday travel for older people in rural areas. *J. Transp. Health* **2018**, *11*, 141–152. [CrossRef]
- 124. Ward, M.R.; Somerville, P.; Bosworth, G. Now without my car I don't know what I'd do. *Local Econ.* **2013**, *28*, 553–566. [CrossRef]
- 125. Bennett, R.; Vijaygopal, R.; Kottasz, R. Willingness of people with mental health disabilities to travel in driverless vehicles. *J. Transp. Health* **2019**, *12*, 1–12. [CrossRef]
- 126. Bennett, R.; Vijaygopal, R.; Kottasz, R. Attitudes towards autonomous vehicles among people with physical disabilities. *Trans. Res. Part A Policy Pract.* **2019**, 127, 1–17. [CrossRef]
- 127. Velaga, N.R.; Beecroft, M.; Nelson, J.D.; Corsar, D.; Edwards, P. Transport poverty meets the digital divide: Accessibility and connectivity in rural communities. *J. Transp. Geogr.* **2012**, *21*, 102–112. [CrossRef]
- 128. Hensher, D.A. Some insights into the key influences on trip-chaining activity and public transport use of seniors and the elderly. *Int. J. Sustain. Transp.* **2007**, *1*, 53–68. [CrossRef]
- 129. Goggin, G.; Ellis, K.; Hawkins, W. Disability at the centre of digital inclusion. *Commun. Res. Pract.* **2019**, *5*, 290–303. [CrossRef]
- 130. Yigitcanlar, T. Australian local governments' practice and prospects with online planning. *URISA J.* **2006**, *18*, 7–17.
- Meng, L.; Somenahalli, S.; Berry, S. Policy implementation of multi-modal (shared) mobility. *Transp. Rev.* 2020, 40, 670–684. [CrossRef]
- 132. Guo, Y.; Wang, J.; Peeta, S.; Anastasopoulos, P.C. Impacts of internal migration, household registration system, and family planning policy on travel mode choice in China. *Travel Behav. Soc.* **2018**, *13*, 128–143. [CrossRef]
- 133. Guo, Y.; Wang, J.; Peeta, S.; Ch. Anastasopoulos, P. Personal and societal impacts of motorcycle ban policy on motorcyclists' home-to-work morning commute in China. *Travel Behav. Soc.* **2020**, *19*, 137–150. [CrossRef]
- 134. Liu, J.; Xiao, L.; Yang, L.; Zhou, J. A tale of two social groups in Xiamen, China: Trip frequency of migrants and locals and its determinants. *Travel Behav. Soc.* 2020, 20, 213–224. [CrossRef]
- 135. Creutzig, F.; Franzen, M.; Moeckel, R.; Heinrichs, D.; Nagel, K.; Nieland, S.; Weisz, H. Leveraging digitalization for sustainability in urban transport. *Glob. Sustain.* **2019**, *2*, e14. [CrossRef]
- Ruan, Y.; Zhu, D.; Lu, J. Social adaptation and adaptation pressure among the "drifting elderly" in China. *Int. J. Health Plan. Manag.* 2019, 34, e1149–e1165. [CrossRef] [PubMed]
- 137. Hopkins, D.; Schwanen, T. Automated mobility transitions. Sustainability 2018, 10, 956. [CrossRef]
- 138. Wong, Y.Z. To Limit Coronavirus Risks on Public Transport, Here's What We Can Learn from Efforts Overseas. The Conversation 2020. Available online: https://theconversation.com/to-limit-coronavirus-risks-on-publictransport-heres-what-we-can-learn-from-efforts-overseas-133764 (accessed on 20 March 2020).



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).